140.800: How to Al (for Public Health)

Week 3: (Large) Language Models

Yiqun T. Chen
Email: yiqunc@jhu.edu
Schedule office hours via email

Departments of Biostatistics and Computer Science
Data Science & Al Initiative and Malone Center for Engineering in Health

What are Large Language Models?

Definition:
@ Neural networks trained on massive text corpora
@ Transformer architecture with billions of parameters
@ Learn patterns in language through self-supervised learning
°

Can generate human-like text and perform various language tasks

Key Capabilities:

Text generation: Create coherent, contextual text

°
@ Question answering: Respond to complex queries

@ Summarization: Distill key information from documents
°

Translation: Convert between languages and domains

The Scale Revolution

Model Size Evolution:
e BERT (2018): 110M — 340M parameters
e GPT-2 (2019): 1.5B parameters
e GPT-3 (2020): 175B parameters
e PalLM (2022): 540B parameters
e GPT-4 (2023): Estimated 1+ trillion parameters

Emergent Abilities:
@ Few-shot learning: Learn new tasks from examples
e Chain-of-thought reasoning: Step-by-step problem solving
@ In-context learning: Adapt behavior within a conversation

@ Task generalization: Apply knowledge across domains

Recap: From Sequence Modeling to Self-Supervision

Traditional Sequence Modeling:
@ Traditional word representations are very corpus-limited

@ Limited context window and parallel processing (e.g., RNNs, LSTMs)

The Transformer Revolution (2017):
@ “Attention is All You Need": Self-attention mechanism
o Parallel processing: All positions processed simultaneously

@ Scalability: Efficient training on large datasets

Self-Supervised Learning: The Foundation

What is Self-Supervised Learning?
@ Learn from unlabeled data by creating labels from the data itself
@ No human annotation required

@ Massive scale: unlabeled means we could train on much larger text
corpora

Two Main Approaches:

@ Masked Language Modeling (BERT-style): “The [MASK] sat on the
mat”

o Causal Language Modeling (GPT-style): “The cat sat on the
— predict next token

Masked Language Model Pretraining

Setup: Given a tokenized sentence = = (z1, .
set of masked positions M.

@ For i € M: replace with [MASK] token (80%), random token (10%),
or keep unchanged (10%).

@ Only masked positions contribute to the loss.

..,x7), randomly choose a

Loss:

Masked Language Model Pretraining

Setup: Given a tokenized sentence = (z1,...,27), randomly choose a
set of masked positions M.

@ For i € M: replace with [MASK] token (80%), random token (10%),
or keep unchanged (10%).

@ Only masked positions contribute to the loss.

Loss:

Lyvim = — Z log po(; | T\ m)-
ieM

Interpretation: Predict the original words at the masked positions, given
the rest of the sentence.

Masked Language Model Pretraining

Toy Example: single mask
Input sequence:

the cat sat on the [MASK]
Gold token:

mat

Model predictions (top-5):
e mat: 0.70
@ floor: 0.15
@ chair: 0.10
@ sofa: 0.03
@ ground: 0.02
Loss contribution:
—1og0.70 =~ 0.357

Masked Language Model Pretraining

How cross-entropy loss works:
@ We always look at the probability assigned to the true token.
e If p(gold) is high = loss is small.
e If p(gold) is low = loss is large.

e Correct predictions still contribute non-zero loss unless p(gold) = 1.

Example:
¢ = —log p(‘‘mat”’)
Model prob. Loss
p=10.85 —1og 0.85 =~ 0.16 (small)
p=0.70 —1og 0.70 ~ 0.36
p=10.05 —10g 0.05 == 2.99 (large)

Key point: Training nudges the model to shift more probability mass to
the correct token.

Masked Language Model Pretraining

General-domain pretraining (BERT, RoBERTa, etc.):
e Wikipedia + BookCorpus (original BERT)
e Common Crawl (CC-News, OpenWebText, RoBERTa)
@ Large web-scale datasets (C4 for T5, The Pile, etc.)

Domain-specific adaptations:
@ BioBERT: continues BERT pretraining on PubMed abstracts and
PMC full-text articles.
e SciBERT: trained from scratch on scientific papers (Semantic Scholar
corpus).
@ ClinicalBERT: fine-tuned on clinical notes (MIMIC-11l EHR dataset).
e FinBERT: financial text (analyst reports, SEC filings, news).

Key idea: Take a general BERT model and further pretrain
(domain-adaptive pretraining) or train from scratch on domain corpora —
embeddings become specialized to that field's vocabulary and style.

10

Masked Language Model Pretraining (Drawing)

11

Causal (Autoregressive) Language Modeling

Idea: Predict the next token given all previous ones.
@ Unlike BERT (masked LM), no bidirectional context.

@ At position t, model only sees oy = (x1,...,2¢-1).

Objective:

Interpretation:

12

Causal (Autoregressive) Language Modeling

Idea: Predict the next token given all previous ones.
@ Unlike BERT (masked LM), no bidirectional context.

@ At position t, model only sees oy = (x1,...,24-1).

Objective:

T
Lom =— logpe(zt | 2<)
=1

Interpretation: Train the model to generate text one token at a time.

13

Causal Language Modeling

Cross-entropy loss at each step:
ty = —logpy(zt | v<t)

@ Compares the model's predicted distribution with the true token.
@ Model assigns a high probability to the correct token — small loss.
@ Low probability on correct token — large loss.

Example: Input prefix = ‘‘the cat sat on the”
Gold next token mat
Model p(mat) 0.75
Loss contribution —10g0.75 =~ 0.29

14

Causal Language Modeling

Toy example — step by step generation
Prefix: ““the cat”’

@ Step 1: predict next token

e p(sat) = 0.6, p(runs) = 0.2, p(eats) = 0.2
o Choose sat

@ Step 2: prefix is now ‘“the cat sat”
o Predicts next token p(on) = 0.7, p(under) = 0.2,...
e Choose on

Generated sequence: the cat sat on

15

Causal Language Modeling

General-domain pretraining corpora:
e GPT-2/3: WebText (scraped from outbound Reddit links).

@ GPT-4/5 style: massive curated web + books + code + academic
papers.

@ The Pile, C4, Common Crawl.

Domain-specialized variants:
@ Code models (Codex, CodeGen, StarCoder) — source code corpora.
@ BioGPT — biomedical papers (PubMed).
o LegalGPT, FinGPT — legal and financial corpora.

Key point: Same objective, but data domain defines specialization.

16

Causal Language Modeling (Drawing)

17

Causal LM Training Loss Across Sentences

How is the loss aggregated?
@ GPT treats training text as one long token stream (after tokenization).

@ Breakpoints are inserted at document boundaries (e.g., end-of-text
tokens).

e Within each segment (context window), the loss is computed at every
step:

T
L=— Zlogpe(ﬂﬁt | 2<t)
t=1
@ Loss is summed (or averaged) across all tokens in the batch.

@ No “next sentence prediction” like BERT — continuity is handled by
concatenation.

Key Point: GPT learns to model long sequences of text seamlessly, not
sentence-by-sentence.

18

MLM vs. CLM — Which for Which?

Masked LM (BERT-style):
°
°

Causal LM (GPT-style):
]
]

Summary:
o

19

MLM vs. CLM — Which for Which?

Masked LM (BERT-style):

@ Strength: bidirectional context — strong encoder representations.

e Limitation: not directly generative (needs extra heads).

@ Best for: classification, retrieval, embeddings, understanding tasks

(e.g., sentiment analysis, named entity recognition, QA retrieval).

Causal LM (GPT-style):

@ Strength: autoregressive generation — fluent text continuation.

@ Best for: text generation, dialogue, summarization, code completion.

e Limitation: no direct bidirectional encoding (left-to-right only).

Summary:
@ BERT/MLM = “read and understand.”
e GPT/CLM = “predict and generate.”

20

The Attention ldea

Core motivation: When reading, we don't treat every word equally. Some
words are more relevant than others for understanding the current word.

Toy example: Sentence: “The cat sat on the mat.”

e To interpret “sat,” we care most about “cat” (subject) and “mat”
(object).

@ Attention is a mechanism to learn these relevance weights
automatically.

@ Each token builds its new representation by looking at others,
weighted by importance.

Key idea: Attention lets every token see (and borrow information from) all
other tokens.

21

Recap: Token Embeddings

From words to vectors:

@ Words/tokens are mapped to fixed-length vectors (e.g. 300-d in
Word2Vec, 768-d in BERT).

@ Embeddings capture meaning: similar words — nearby vectors.

@ In Transformers, we start with a learned embedding lookup table.

Token Embedding (2D toy)

“cat” (0.9, 0.8)
Toy example (2D illustration): ‘“dog” (0.8, 0.7)
“mat” (0.1, 0.9)
“sat” (0.5, 0.3)

Key point: These initial embeddings are the “raw ingredients.” Attention
will transform them into contextual embeddings that depend on
surrounding words.

22

Introducing Q, K, V

How can we compute ‘“relevance” between tokens? We project each
token embedding into three spaces:

e Query (Q): What am | looking for? (e.g., “sat” asking for
subject/object)

e Key (K): What do | contain? (e.g., “cat” contains subject info)

e Value (V): What information can | provide if | am selected?

Toy analogy:
@ “sat” sends out a query vector.

@ It matches strongly with the key of “cat,” somewhat with “mat,”
weakly with others.

@ Weighted sum of corresponding values = enriched representation of

“sat.

Result: Each word representation becomes context-aware.

23

Introducing Q, K, V

The formula:

. QKT
Attention(Q, K, V) = softmax 174
Vg

What it means:
© Compute similarity: QKT (dot products between queries and keys).
@ Scale by \/dj, to control variance (dj, is the number of rows of K).
© Apply softmax to get attention weights (probabilities).
@ Multiply weights with V' to get a weighted combination of values.

Intuition: Each token asks (Q) “Who is relevant?” and collects info (V)
from others according to the match (K).

24

From Formula to PyTorch

The formula again:

Attention(Q, K, V) = Softm&x(QKT) Vv

Implementation in PyTorch:

import torch
import torch.nn.functional as F

def scaled_dot_product_attention(Q, K, V):
d_k = Q.size(-1) # embedding dimension
1. Similarity scores
scores = torch.matmul(Q, K.transpose(-2, -1))
2. Scale
scores = scores / torch.sqrt(torch.tensor(d_k, dtype=torch.float32))
3. Softmax normalization
weights = F.softmax(scores, dim=-1)
4. Weighted sum of values
output = torch.matmul(weights, V)
return output, weights

Note: This is the core step inside every Transformer attention head.

25

Toy Example: Q, K, V

Sentence: “The cat sat” (focus on “sat”)

Token Embedding
Step 1. Embeddings (toy 2D) cat (1, 0)
sat (0, 1)
Step 2. Linear projections — Q, K, V
@ Query (“sat”) = (0.2, 0.8)
e Key (“cat”) = (0.9, 0.1), Value = (1.0, 0.0)
e Key (“sat”) = (0.3, 0.7), Value = (0.0, 1.0)

Step 3. Compute attention scores (dot products)
score(sat—cat) = 0.2-0.9+4 0.8 0.1 = 0.26

score(sat—sat) =0.2- 0.3+ 0.8 - 0.7 = 0.62

26

Toy Example: Q, K, V

Step 4. Normalize with softmax

a = softmax([0.26, 0.62]) = [0.41, 0.59]

Step 5. Weighted sum of values (contextual embedding)

Output(sat) = 0.41 - (1,0) + 0.59 - (0,1) = (0.41, 0.59)

Interpretation:
@ “sat” looks partly to itself, partly to “cat”.
@ The new embedding mixes subject + self-information.

@ Attention lets “sat” carry forward contextualized meaning.

27

Attention in Causal Language Modeling

Recap: Attention output for each token

hy = Attention(Qy, K<¢, V<)

e For position ¢, we only attend to tokens z<; (causal mask).
@ The contextual vector h; is passed through feed-forward layers.

o Finally, h; is projected onto the vocabulary to predict z;y1.

Same loss function (Causal LM):

T
Lam=—Y logps(ar | 2<)
=1

28

What is a Multi-Head Attention Head?

So far: One set of Q, K,V projections = one “attention head.”

Multi-Head setup:
@ Use H different sets of projection matrices.
@ Each head attends in a different “representation subspace.”
@ Outputs from all heads are concatenated for next steps.

MHA(Q, K, V) = [head,;. .. ; head ;] W©

Example intuition:
@ Head 1: pronoun resolution (“it” — “animal’)
@ Head 2: subject—verb link (“cat” «+» “sat”)
@ Head 3: object link (“sat” — “mat”)

Takeaway: Multiple heads let the model capture different types of
relations in parallel.

29

Common Hyperparameters

Key design knobs in a Transformer:

e Embedding dimension (dmodel) Size of token vectors (128 — 4096).
Larger = richer representation, but quadratic cost in GPU memory.

@ Number of heads (H) Splits dmodel into parallel subspaces. Typical:
4-16. More heads = more perspectives, but each adds compute.

e Layers (V) Depth of stacked Transformer blocks. Deeper = stronger
modeling, but training is slower.

o Feed-forward size (dg) Inner hidden dimension (often 2-4x dodel)-
Controls non-linear capacity; memory-intensive.

e Context length (sequence length) Max tokens per batch (e.g. 512,
2k, 8k+). Attention cost grows as O(L?) with sequence length.

Rule of thumb: Each choice trades off accuracy vs GPU cost.

30

Practical Sizes and GPU Cost

How big do models need to be?

e Small (classroom / toy) diodei=128, H=4, N=2-4, context=128.
Fits on laptop CPU or single small GPU. Good for demos.

e Medium (research / fine-tuning) d,ode=512-768, H=8-12,
N=6-12, context=512-2k. Needs ~1 modern GPU (12-24GB).
BERT-base is here.

o Large models dp,ogei=2k-4k, H=32-64, N=24-48, context=2k-32k.
Needs multiple GPUs (A100/H100, TPU pods). Training cost =
millions of GPU hours.

31

Pretraining Recap: What, Why, What's Learned

Data:

@ Massive diverse corpora: web pages, books, code, articles, research.
@ Trillions of tokens—self-supervised learning via language patterns.

@ Cleaning is essential: removing duplicates, noisy or personally
identifiable data. :contentReference[oaicite:1]index=1

Objective: Causal LM training:

T
L==> logp(z; | 1<)
t=1

E.g., "The patient showed symptoms of" — "fever"

What emerges:
e Syntax, semantics, world knowledge, reasoning.
@ Predicting the next token drives internal understanding of language.

32

Pretraining in Practice: Challenges, Infrastructure & Cost

Challenges:
e Compute: Requires thousands of GPUs for weeks.

e Stability: Models can diverge — need LR warmup, clipping,
normalization.

o Data: Web text is noisy; filtering & deduplication are critical.

Infrastructure & Cost:
@ GPT-3 scale: ~10k GPUs, cost ~tens of millions.
@ Scaling: Distributed training (data/tensor/pipeline) keeps GPUs busy.

e Efficiency: Mixed precision (FP16/BF16, now 4-bit) cuts memory &
boosts speed.

Takeaway: Simple next-token loss, but enormous compute + careful
engineering required.

33

So... Does This Mean We Can't Do LLMs with $1M?

Obviously not! Training GPT-4 scale from scratch costs hundreds of
millions, but we don't need to start from zero.

Solution: Use pretrained models:
@ Hugging Face hosts thousands of ready-to-use models (BERT,
GPT-2/3 variants, LLaMA, Mistral, Falcon, etc.).
@ You can adapt them to your domain for a tiny fraction of the cost.

Example: Hugging Face Model Hub

34

https://huggingface.co/models

Not From Scratch: Model APIls & Hosting

What is an API?
@ API = Application Programming Interface

e A standardized way for software to communicate (send a request, get
a response).

@ For LLMs: you send text input — provider's server runs the model —
you get back text output.

Why it matters for LLMs:
@ No need to train or even host large models yourself.
@ Provider handles GPUs, scaling, and updates.

@ You focus on your application logic.

Common API providers: OpenAl (GPT-4/40), Anthropic (Claude),
Hugging Face Inference API.

35

How an API Call Works

Steps to use a hosted model:
@ Get an API key from the provider.
@ Install their Python client or use HTTP requests.
© Send text input — receive model output.

Example (OpenAl, text completion):

from openai import OpenAI
client = OpenAI(api_key="YOUR_KEY")

resp = client.chat.completions.create(
model="gpt-40-mini",
messages=[{"role": "user",
"content":"Explain photosynthesis in one sentence."}]

)

print(resp.choices[0] .message.content)
-> "Plants make food from sunlight, water, and C02."

Takeaway: 3-5 lines of code = LLM in your app.
36

Zero-Shot Learning

What is it? Model solves tasks without any task-specific training, just by
following instructions.

Example (Hugging Face):

from transformers import pipeline

clf = pipeline("zero-shot-classification",
model="facebook/bart-large-mnli")

text = "This patient shows signs of high fever and cough."
labels = ["sports", "finance", "medical"]

result = clf(text, candidate_labels=labels)

print(result["labels"])
-> [’medical’]

37

Zero-Shot Learning

Beyond classification: APls also let you generate text completions.

Example (OpenAl, completion):

from openai import OpenAI
client = OpenAI(api_key="YOUR_KEY")

resp = client.completions.create(
model="gpt-40",
prompt="The cat sat on the",
max_tokens=10

)

print(resp.choices[0] .text)
-> "mat and purred softly."

Key idea: One API, many tasks (Q&A, dialogue, code, completion).

38

Beyond Zero-Shot: Supervised Fine Tuning

Setup: Map input (e.g., customer feedback) x to a label token
y € {NEG, NEU, POS} (e.g., sentiment classfication).
Example:
Input "Service was quick and friendly."
Target label token POS
Loss (token-level Cross-Entropy):

Use one-layer NN

Lser(0) = —logpe(y | x) — log softmax(Wh(x)),

where h(z) is the model representation used for classification (e.g.,
sentence embedding).

After training, you will have a classifier on top of the original model.

39

Beyond categorical labels: Open-Ended Responses

Discussion: When multiple answers can be valid, how should we evaluate
the quality of different responses?

40

Leveraging Human Preference: RLHF

Intuition (pairwise preference):
e For a prompt z, humans compare two model responses (v, ;) and
mark the preferred one (y,,).
@ Train a reward model r4(x,y) to predict these human preferences.
e Optimize the policy 7y to increase reward while staying close to an
SFT reference policy.

RLHF: Intuition Behind the Math

Objective:
meax Eywwg(-\w)[T¢(x7 y)] - ﬂDKL(ﬂ'G ” 7"'SFT)

Breakdown:

o First term: maximize reward r4(z,y) (model should generate
responses humans like).

@ Second term: penalize KL divergence from wspr — keep the
fine-tuned model close to the supervised baseline.

e [3: tradeoff between learning new behavior and staying safe/stable.

Intuition: Think of it as: “learn from preferences, but don't drift too far
from what we know works.”

42

RLHF: Toy Example

Prompt z: "Write a polite email declining a job offer."
Candidate responses:
® Yy, "Thank you for the offer. After careful thought I
will not be accepting, but I truly appreciate the
opportunity." (preferred)
@ y;: "I don’t want this job." (less preferred)
Baseline SFT policy mset:
@ Trained on generic instruction data.
@ Knows how to decline but doesn’t reliably choose polite over blunt
style.
e Might assign: mspt(yw|z) = 0.45, mspr(yi|x) = 0.40.
RLHF update:
@ Reward model gives higher score to y,,.
@ New policy 7y shifts probability mass:
o (yw|x) = 0.70, mo(y1|2) = 0.15.
Takeaway: RLHF amplifies preferences while keeping 7y close to mspT.

43

RLHF: Why the KL Term Matters

Example 1: Creative Writing Request Prompt: "Write a short
story about a detective solving a mystery." Without KL

penalty:

@ Reward model learns users rate “surprising” and “unique” content
highly.

@ Output: "The detective was actually the criminal’s pet
goldfish who gained consciousness through quantum
mechanics and solved the case by swimming through
interdimensional portals."

@ Problem: Technically “surprising,” but nonsensical — reward hacking.
With KL penalty:

@ Model stays anchored to coherent storytelling patterns from SFT.
e Output: The muddy prints led to the garden shed, where
the detective discovered the missing antique vase.

44

Limitations of RLHF: Why Look Beyond It?

RLHF has been very successful, but it comes with challenges:

@ Expensive and slow: Requires collecting many human preference
labels, plus training a separate reward model and doing RL (e.g.,
PPO).

e Instability: Reward model can be gamed — risk of reward hacking if
KL term is not tuned carefully.

e Engineering overhead: Complex pipeline (SFT — reward model —
RLHF). Harder to reproduce and scale compared to simple finetuning.

e Opaque behavior: Reward models may encode hidden biases;
alignment is indirect.

Motivation: Simpler approaches like Direct Preference Optimization
(DPO) aim to keep the benefits of preference learning but avoid extra
reward models and RL machinery.

45

Direct Preference Optimization (DPO): Overview

Idea: Align to human preferences without training a reward model or
running RL.

e Given prompt x and two responses (Y., y) With v, > y; (human
prefers yy,).

@ Push policy mp to prefer y,, over y;, relative to a reference policy mef
(usually SFT).

Objective:
Lopo = —log o § (Alog m — Alog mer))
where Alog 7, =log 7« (yy |) — log me(y; |) and o is logistic.

Takeaway: Increase the margin favoring y,, beyond what the reference
(SFT) already does.

46

DPO: Intuition Behind the Math

Pairwise margin view:
Alogmg = logmg(yw|z) — log mg(yi|z) vs Alog mres

o If Alogmy > Alog mf, the model prefers y,, more than the reference
= low loss.

o If Alogmy < Alog mef, the model has not improved preference margin
= higher loss.

@ (3 scales the strength of the margin push (temperature).

Why this works: No explicit reward model; just compare (win, lose) pairs
and teach the model to separate them more than the SFT baseline.

47

DPO: Toy Example (with Reference SFT)

Prompt z: "Explain Newton’s First Law in simple terms."
Responses:

@ y, (preferred, plain): "Objects keep moving or stay still
unless something pushes or pulls them."

@ y; (less preferred, jargon): "A body maintains its velocity
vector unless acted on by an external resultant force."
Reference (SFT) policy:

Tref(Yw|Z) = 0.42, mef(yr|z) = 0.38, Alog myef ~ log(0.42) —log(0.38) = 0.10
New policy (after DPO):
To(yw|x) = 0.65, mo(yi|z) = 0.20, Alogmy =~ log(0.65) — log(0.20) = 1.18

Interpretation: Margin improved 0.10 — 1.18; the loss drops because
more strongly prefers the human-preferred answer than SFT did.

48

Policy vs. LLM Qutput: What Gets Updated?

Supervised learning recap:

1 N
NZ f9 wz yz
In RLHF / DPO:
To(yt | ©,y<¢) = softmax(Whe(x,y<t))

N
o1
min > Lorer(mo (1), 41, ;)
i=1
@ Policy my = LLM token distribution.
@ Output text = sample from my.
e Updating § = same as ERM, but loss £p.f comes from preferences
(e.g. reward+KL in RLHF, margin in DPO).

Efficiency: LoRA = only train small low-rank adapters in attention.

49

Fine-Tuning Helps... But Has Drawbacks

Problems with naive fine-tuning / RLHF:

e Training instability & reward hacking: Models may game the
reward, producing strange outputs that score well but are unhelpful.

@ Model collapse: Training on self-generated outputs can degrade
diversity and accuracy over time.

o Cost & scale: Full fine-tuning of large LLMs requires huge compute
+ data. Even partial methods (e.g., RLHF with PPO) are still
expensive.

So we ask: Can we get aligned behavior without retraining the whole
model?

50

In-Context Learning (ICL): Few-Shot Prompting

What is In-Context Learning?

Model learns a task from a few examples (shots) provided directly in the
prompt. No fine-tuning or gradient updates are needed!

Prompt = [exj,...,ex; ,new input] — Model Output
—_———— —
Few-shot examples Query

Examples in Action

Math: Input: 2 — Output: Medical: Patient: cough, fever — Flu

4 Patient: chest pain — Heart Issue
Input: 3 — Output: 9 Patient: runny nose — 7

. ?
Input: 4 — 7 Model Output: Cold

Model Output: 16 (Learns symptom mapping)
(Learns the rule z — z*)

a1
iy

Chain-of-Thought (CoT) Prompting

Key Idea: Instead of just asking for the answer, you ask for the process.
This decomposes the problem into simpler, intermediate steps.

Zero-Shot CoT Example

Standard Prompt:
Q: A jug has 1000ml of water. | pour 250ml into a glass and then use
150ml for cooking. How much is left? A: 750ml (Incorrect)

CoT Prompt:
Q: A jug has 1000ml of water. | pour 250ml into a glass and then use
150ml for cooking. How much is left? Let’s think step by step. A:

© Start with 1000ml.

@ Pouring 250ml into a glass leaves 1000ml - 250m| = 750ml.

@ Using 150ml for cooking leaves 750ml - 150ml| = 600ml.
Final Answer: 600ml| (Correct)

.

52

Beyond CoT: Advanced Reasoning Techniques

Simple CoT can fail on harder tasks. Advanced methods structure
reasoning or connect to external tools:
e Self-Consistency:
e Sample multiple CoT traces with temperature > 0.

o Aggregate by majority vote on the final answer.
o Reduces reliance on any single flawed chain.
e Tree of Thoughts (ToT):
o Extends CoT into a tree of reasoning steps.
o At each step, generate several “thoughts,” evaluate, and prune.
o Useful for planning and search-heavy tasks (games, puzzles).
e ReAct (Reasoning + Acting):
o Interleaves thoughts with actions (e.g., API calls, web searches).

e Grounds reasoning with external tools, overcoming knowledge cutoffs.
e Example: search("current price of NVIDIA stock").

53

Beyond CoT: Advanced Reasoning Techniques

e Self-Consistency:

Task: “What is 23 x 477"

Run the same CoT multiple times with randomness.
Outputs: [1081, 1081, 981, 1081, 1081].

Majority vote — 1081 (correct).

e Tree of Thoughts (ToT):

e Task: “Can the 8-puzzle be solved from this start state?”

e Model explores moves as a tree: Step 1: try sliding left / up / right.
Step 2: evaluate partial board states.

e Prune bad branches — find a valid solution path.

e ReAct (Reasoning + Acting):

Task: “Who won the 2024 NBA finals?”

Thought: “Need current info.”

Action: search("2024 NBA finals winner")
Observation: “Boston Celtics defeated Dallas Mavericks.”
Final Answer: “The Celtics won in 2024."

54

Automating Prompt Engineering

Manual prompt design is brittle, time-consuming, and often fails to
generalize — this is prompt fragility. New methods treat prompt design
as an optimization problem rather than manual trial-and-error.

e Automatic Prompt Engineer (APE): LLM generates and scores
candidate instructions.

e DSPy: Prompt-as-programming with modules (ChainO0fThought,
ReAct); compiler optimizes prompts and examples.

e TextGrad: Views prompts as differentiable “parameters,” enabling
gradient-style search.

@ Microsoft APO: lterative RL-style framework to refine prompts for
robust performance.

Key idea: Moving from manual prompt engineering to automated
prompt programming.

55

Comparison: Fine-Tuning vs. In-Context Learning

Fine-Tuning (SFT / RLHF / DPO)
Core Idea Update parameters 6: ming % S U(fo(xs),yi)
Infrastructure | Heavy: GPUs/TPUs, training pipelines, monitoring
Performance Specialized: SOTA in domain tasks; embeds deep knowledge
Challenges Expensive; catastrophic forgetting; alignment tax; collapse risk

Use When... Need domain expertise, safety, and long-term consistency

In-Context Learning (ICL)

Core ldea Keep 6 fixed; condition on demos: 7(y|x, demo)
Infrastructure | Light: API or local inference; no retraining

Performance Flexible: effective few/zero-shot; adapts quickly across tasks
Challenges Prompt fragility; context window limits; inference cost/latency
Use When... Need rapid prototyping, ad-hoc reasoning, or lack labeled data

Takeaway: Fine-tuning = update 6. ICL = reuse 6 via conditioning.

56

