
140.800: How to AI (for Public Health)

Week 3: (Large) Language Models

Yiqun T. Chen
Email: yiqunc@jhu.edu

Schedule office hours via email

Departments of Biostatistics and Computer Science
Data Science & AI Initiative and Malone Center for Engineering in Health

1

What are Large Language Models?

Definition:
Neural networks trained on massive text corpora
Transformer architecture with billions of parameters
Learn patterns in language through self-supervised learning
Can generate human-like text and perform various language tasks

Key Capabilities:
Text generation: Create coherent, contextual text
Question answering: Respond to complex queries
Summarization: Distill key information from documents
Translation: Convert between languages and domains

2

The Scale Revolution

Model Size Evolution:
BERT (2018): 110M – 340M parameters
GPT-2 (2019): 1.5B parameters
GPT-3 (2020): 175B parameters
PaLM (2022): 540B parameters
GPT-4 (2023): Estimated 1+ trillion parameters

Emergent Abilities:
Few-shot learning: Learn new tasks from examples
Chain-of-thought reasoning: Step-by-step problem solving
In-context learning: Adapt behavior within a conversation
Task generalization: Apply knowledge across domains

3

Recap: From Sequence Modeling to Self-Supervision

Traditional Sequence Modeling:
Traditional word representations are very corpus-limited
Limited context window and parallel processing (e.g., RNNs, LSTMs)

The Transformer Revolution (2017):
“Attention is All You Need”: Self-attention mechanism
Parallel processing: All positions processed simultaneously
Scalability: Efficient training on large datasets

4

Self-Supervised Learning: The Foundation

What is Self-Supervised Learning?
Learn from unlabeled data by creating labels from the data itself
No human annotation required
Massive scale: unlabeled means we could train on much larger text
corpora

Two Main Approaches:
Masked Language Modeling (BERT-style): “The [MASK] sat on the
mat”
Causal Language Modeling (GPT-style): “The cat sat on the ___”
→ predict next token

5

Masked Language Model Pretraining

Setup: Given a tokenized sentence x = (x1, . . . , xT), randomly choose a
set of masked positions M.

For i ∈ M: replace with [MASK] token (80%), random token (10%),
or keep unchanged (10%).
Only masked positions contribute to the loss.

Loss:
LMLM = −

∑
i∈M

log pθ
(
xi

∣∣x\M)
.

Interpretation: Predict the original words at the masked positions, given
the rest of the sentence.

6

Masked Language Model Pretraining

Setup: Given a tokenized sentence x = (x1, . . . , xT), randomly choose a
set of masked positions M.

For i ∈ M: replace with [MASK] token (80%), random token (10%),
or keep unchanged (10%).
Only masked positions contribute to the loss.

Loss:
LMLM = −

∑
i∈M

log pθ
(
xi

∣∣x\M)
.

Interpretation: Predict the original words at the masked positions, given
the rest of the sentence.

7

Masked Language Model Pretraining

Toy Example: single mask
Input sequence:

the cat sat on the [MASK]

Gold token:

mat

Model predictions (top-5):
mat: 0.70
floor: 0.15
chair: 0.10
sofa: 0.03
ground: 0.02

Loss contribution:
− log 0.70 ≈ 0.357

8

Masked Language Model Pretraining

How cross-entropy loss works:
We always look at the probability assigned to the true token.
If p(gold) is high ⇒ loss is small.
If p(gold) is low ⇒ loss is large.
Correct predictions still contribute non-zero loss unless p(gold) = 1.

Example:
ℓ = − log p(“mat”)

Model prob. Loss
p = 0.85 − log 0.85 ≈ 0.16 (small)
p = 0.70 − log 0.70 ≈ 0.36
p = 0.05 − log 0.05 ≈ 2.99 (large)

Key point: Training nudges the model to shift more probability mass to
the correct token.

9

Masked Language Model Pretraining

General-domain pretraining (BERT, RoBERTa, etc.):
Wikipedia + BookCorpus (original BERT)
Common Crawl (CC-News, OpenWebText, RoBERTa)
Large web-scale datasets (C4 for T5, The Pile, etc.)

Domain-specific adaptations:
BioBERT: continues BERT pretraining on PubMed abstracts and
PMC full-text articles.
SciBERT: trained from scratch on scientific papers (Semantic Scholar
corpus).
ClinicalBERT: fine-tuned on clinical notes (MIMIC-III EHR dataset).
FinBERT: financial text (analyst reports, SEC filings, news).

Key idea: Take a general BERT model and further pretrain
(domain-adaptive pretraining) or train from scratch on domain corpora →
embeddings become specialized to that field’s vocabulary and style.

10

Masked Language Model Pretraining (Drawing)

11

Causal (Autoregressive) Language Modeling

Idea: Predict the next token given all previous ones.
Unlike BERT (masked LM), no bidirectional context.
At position t, model only sees x<t = (x1, . . . , xt−1).

Objective:

LCLM = −
T∑
t=1

log pθ(xt | x<t)

Interpretation: Train the model to generate text one token at a time.

12

Causal (Autoregressive) Language Modeling

Idea: Predict the next token given all previous ones.
Unlike BERT (masked LM), no bidirectional context.
At position t, model only sees x<t = (x1, . . . , xt−1).

Objective:

LCLM = −
T∑
t=1

log pθ(xt | x<t)

Interpretation: Train the model to generate text one token at a time.

13

Causal Language Modeling

Cross-entropy loss at each step:

ℓt = − log pθ(xt | x<t)

Compares the model’s predicted distribution with the true token.
Model assigns a high probability to the correct token → small loss.
Low probability on correct token → large loss.

Example: Input prefix = “the cat sat on the”
Gold next token mat
Model p(mat) 0.75
Loss contribution − log 0.75 ≈ 0.29

14

Causal Language Modeling

Toy example — step by step generation
Prefix: “the cat”

Step 1: predict next token
p(sat) = 0.6, p(runs) = 0.2, p(eats) = 0.2
Choose sat

Step 2: prefix is now “the cat sat”
Predicts next token p(on) = 0.7, p(under) = 0.2, . . .
Choose on

Generated sequence: the cat sat on __

15

Causal Language Modeling

General-domain pretraining corpora:
GPT-2/3: WebText (scraped from outbound Reddit links).
GPT-4/5 style: massive curated web + books + code + academic
papers.
The Pile, C4, Common Crawl.

Domain-specialized variants:
Code models (Codex, CodeGen, StarCoder) → source code corpora.
BioGPT → biomedical papers (PubMed).
LegalGPT, FinGPT → legal and financial corpora.

Key point: Same objective, but data domain defines specialization.

16

Causal Language Modeling (Drawing)

17

Causal LM Training Loss Across Sentences

How is the loss aggregated?
GPT treats training text as one long token stream (after tokenization).
Breakpoints are inserted at document boundaries (e.g., end-of-text
tokens).
Within each segment (context window), the loss is computed at every
step:

L = −
T∑
t=1

log pθ(xt | x<t)

Loss is summed (or averaged) across all tokens in the batch.
No “next sentence prediction” like BERT — continuity is handled by
concatenation.

Key Point: GPT learns to model long sequences of text seamlessly, not
sentence-by-sentence.

18

MLM vs. CLM — Which for Which?

Masked LM (BERT-style):
Strength: bidirectional context → strong encoder representations.
Limitation: not directly generative (needs extra heads).
Best for: classification, retrieval, embeddings, understanding tasks
(e.g., sentiment analysis, named entity recognition, QA retrieval).

Causal LM (GPT-style):
Strength: autoregressive generation → fluent text continuation.
Best for: text generation, dialogue, summarization, code completion.
Limitation: no direct bidirectional encoding (left-to-right only).

Summary:
BERT/MLM = “read and understand.”
GPT/CLM = “predict and generate.”

19

MLM vs. CLM — Which for Which?

Masked LM (BERT-style):
Strength: bidirectional context → strong encoder representations.
Limitation: not directly generative (needs extra heads).
Best for: classification, retrieval, embeddings, understanding tasks
(e.g., sentiment analysis, named entity recognition, QA retrieval).

Causal LM (GPT-style):
Strength: autoregressive generation → fluent text continuation.
Best for: text generation, dialogue, summarization, code completion.
Limitation: no direct bidirectional encoding (left-to-right only).

Summary:
BERT/MLM = “read and understand.”
GPT/CLM = “predict and generate.”

20

The Attention Idea

Core motivation: When reading, we don’t treat every word equally. Some
words are more relevant than others for understanding the current word.

Toy example: Sentence: “The cat sat on the mat.”
To interpret “sat,” we care most about “cat” (subject) and “mat”
(object).
Attention is a mechanism to learn these relevance weights
automatically.
Each token builds its new representation by looking at others,
weighted by importance.

Key idea: Attention lets every token see (and borrow information from) all
other tokens.

21

Recap: Token Embeddings

From words to vectors:
Words/tokens are mapped to fixed-length vectors (e.g. 300-d in
Word2Vec, 768-d in BERT).
Embeddings capture meaning: similar words → nearby vectors.
In Transformers, we start with a learned embedding lookup table.

Toy example (2D illustration):

Token Embedding (2D toy)
“cat” (0.9, 0.8)
“dog” (0.8, 0.7)
“mat” (0.1, 0.9)
“sat” (0.5, 0.3)

Key point: These initial embeddings are the “raw ingredients.” Attention
will transform them into contextual embeddings that depend on
surrounding words.

22

Introducing Q, K, V

How can we compute “relevance” between tokens? We project each
token embedding into three spaces:

Query (Q): What am I looking for? (e.g., “sat” asking for
subject/object)
Key (K): What do I contain? (e.g., “cat” contains subject info)
Value (V): What information can I provide if I am selected?

Toy analogy:
“sat” sends out a query vector.
It matches strongly with the key of “cat,” somewhat with “mat,”
weakly with others.
Weighted sum of corresponding values = enriched representation of
“sat.”

Result: Each word representation becomes context-aware.
23

Introducing Q, K, V

The formula:

Attention(Q,K, V) = softmax

(
QK⊤
√
dk

)
V

What it means:
1 Compute similarity: QK⊤ (dot products between queries and keys).
2 Scale by

√
dk to control variance (dk is the number of rows of K).

3 Apply softmax to get attention weights (probabilities).
4 Multiply weights with V to get a weighted combination of values.

Intuition: Each token asks (Q) “Who is relevant?” and collects info (V)
from others according to the match (K).

24

From Formula to PyTorch

The formula again:

Attention(Q,K, V) = softmax
(
QK⊤
√
dk

)
V

Implementation in PyTorch:
import torch
import torch.nn.functional as F

def scaled_dot_product_attention(Q, K, V):
d_k = Q.size(-1) # embedding dimension
1. Similarity scores
scores = torch.matmul(Q, K.transpose(-2, -1))
2. Scale
scores = scores / torch.sqrt(torch.tensor(d_k, dtype=torch.float32))
3. Softmax normalization
weights = F.softmax(scores, dim=-1)
4. Weighted sum of values
output = torch.matmul(weights, V)
return output, weights

Note: This is the core step inside every Transformer attention head.
25

Toy Example: Q, K, V

Sentence: “The cat sat” (focus on “sat”)

Step 1. Embeddings (toy 2D)
Token Embedding
cat (1, 0)
sat (0, 1)

Step 2. Linear projections → Q, K, V
Query (“sat”) = (0.2, 0.8)
Key (“cat”) = (0.9, 0.1), Value = (1.0, 0.0)
Key (“sat”) = (0.3, 0.7), Value = (0.0, 1.0)

Step 3. Compute attention scores (dot products)

score(sat→cat) = 0.2 · 0.9 + 0.8 · 0.1 = 0.26

score(sat→sat) = 0.2 · 0.3 + 0.8 · 0.7 = 0.62

26

Toy Example: Q, K, V

Step 4. Normalize with softmax

α = softmax([0.26, 0.62]) = [0.41, 0.59]

Step 5. Weighted sum of values (contextual embedding)

Output(sat) = 0.41 · (1, 0) + 0.59 · (0, 1) = (0.41, 0.59)

Interpretation:
“sat” looks partly to itself, partly to “cat”.
The new embedding mixes subject + self-information.
Attention lets “sat” carry forward contextualized meaning.

27

Attention in Causal Language Modeling

Recap: Attention output for each token

ht = Attention(Qt,K≤t, V≤t)

For position t, we only attend to tokens x≤t (causal mask).
The contextual vector ht is passed through feed-forward layers.
Finally, ht is projected onto the vocabulary to predict xt+1.

Same loss function (Causal LM):

LCLM = −
T∑
t=1

log pθ(xt | x<t)

28

What is a Multi-Head Attention Head?

So far: One set of Q,K, V projections = one “attention head.”

Multi-Head setup:
Use H different sets of projection matrices.
Each head attends in a different “representation subspace.”
Outputs from all heads are concatenated for next steps.

MHA(Q,K, V) = [head1; . . . ; headH]WO

Example intuition:
Head 1: pronoun resolution (“it” → “animal”)
Head 2: subject–verb link (“cat” ↔ “sat”)
Head 3: object link (“sat” → “mat”)

Takeaway: Multiple heads let the model capture different types of
relations in parallel.

29

Common Hyperparameters

Key design knobs in a Transformer:
Embedding dimension (dmodel) Size of token vectors (128 → 4096).
Larger = richer representation, but quadratic cost in GPU memory.
Number of heads (H) Splits dmodel into parallel subspaces. Typical:
4–16. More heads = more perspectives, but each adds compute.
Layers (N) Depth of stacked Transformer blocks. Deeper = stronger
modeling, but training is slower.
Feed-forward size (dff) Inner hidden dimension (often 2–4× dmodel).
Controls non-linear capacity; memory-intensive.
Context length (sequence length) Max tokens per batch (e.g. 512,
2k, 8k+). Attention cost grows as O(L2) with sequence length.

Rule of thumb: Each choice trades off accuracy vs GPU cost.

30

Practical Sizes and GPU Cost

How big do models need to be?
Small (classroom / toy) dmodel=128, H=4, N=2-4, context=128.
Fits on laptop CPU or single small GPU. Good for demos.
Medium (research / fine-tuning) dmodel=512–768, H=8-12,
N=6-12, context=512–2k. Needs ∼1 modern GPU (12–24GB).
BERT-base is here.
Large models dmodel=2k-4k, H=32–64, N=24–48, context=2k–32k.
Needs multiple GPUs (A100/H100, TPU pods). Training cost =
millions of GPU hours.

31

Pretraining Recap: What, Why, What’s Learned

Data:
Massive diverse corpora: web pages, books, code, articles, research.
Trillions of tokens—self-supervised learning via language patterns.
Cleaning is essential: removing duplicates, noisy or personally
identifiable data. :contentReference[oaicite:1]index=1

Objective: Causal LM training:

L = −
T∑
t=1

log p(xt | x<t)

E.g., "The patient showed symptoms of" → "fever"

What emerges:
Syntax, semantics, world knowledge, reasoning.
Predicting the next token drives internal understanding of language.

32

Pretraining in Practice: Challenges, Infrastructure & Cost

Challenges:
Compute: Requires thousands of GPUs for weeks.
Stability: Models can diverge → need LR warmup, clipping,
normalization.
Data: Web text is noisy; filtering & deduplication are critical.

Infrastructure & Cost:
GPT-3 scale: ∼10k GPUs, cost ∼tens of millions.
Scaling: Distributed training (data/tensor/pipeline) keeps GPUs busy.
Efficiency: Mixed precision (FP16/BF16, now 4-bit) cuts memory &
boosts speed.

Takeaway: Simple next-token loss, but enormous compute + careful
engineering required.

33

So. . . Does This Mean We Can’t Do LLMs with $1M?

Obviously not! Training GPT-4 scale from scratch costs hundreds of
millions, but we don’t need to start from zero.

Solution: Use pretrained models:
Hugging Face hosts thousands of ready-to-use models (BERT,
GPT-2/3 variants, LLaMA, Mistral, Falcon, etc.).
You can adapt them to your domain for a tiny fraction of the cost.

Example: Hugging Face Model Hub

huggingface_models.png

Screenshot from huggingface.co/models

34

https://huggingface.co/models

Not From Scratch: Model APIs & Hosting

What is an API?
API = Application Programming Interface
A standardized way for software to communicate (send a request, get
a response).
For LLMs: you send text input → provider’s server runs the model →
you get back text output.

Why it matters for LLMs:
No need to train or even host large models yourself.
Provider handles GPUs, scaling, and updates.
You focus on your application logic.

Common API providers: OpenAI (GPT-4/4o), Anthropic (Claude),
Hugging Face Inference API.

35

How an API Call Works

Steps to use a hosted model:
1 Get an API key from the provider.
2 Install their Python client or use HTTP requests.
3 Send text input → receive model output.

Example (OpenAI, text completion):
from openai import OpenAI
client = OpenAI(api_key="YOUR_KEY")

resp = client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role":"user",

"content":"Explain photosynthesis in one sentence."}]
)

print(resp.choices[0].message.content)
-> "Plants make food from sunlight, water, and CO2."

Takeaway: 3–5 lines of code = LLM in your app.
36

Zero-Shot Learning

What is it? Model solves tasks without any task-specific training, just by
following instructions.

Example (Hugging Face):
from transformers import pipeline

clf = pipeline("zero-shot-classification",
model="facebook/bart-large-mnli")

text = "This patient shows signs of high fever and cough."
labels = ["sports", "finance", "medical"]

result = clf(text, candidate_labels=labels)
print(result["labels"])
-> [’medical’]

37

Zero-Shot Learning

Beyond classification: APIs also let you generate text completions.

Example (OpenAI, completion):
from openai import OpenAI
client = OpenAI(api_key="YOUR_KEY")

resp = client.completions.create(
model="gpt-4o",
prompt="The cat sat on the",
max_tokens=10

)

print(resp.choices[0].text)
-> "mat and purred softly."

Key idea: One API, many tasks (Q&A, dialogue, code, completion).

38

Beyond Zero-Shot: Supervised Fine Tuning

Setup: Map input (e.g., customer feedback) x to a label token
y ∈ {NEG, NEU, POS} (e.g., sentiment classfication).
Example:
Input "Service was quick and friendly."
Target label token POS

Loss (token-level Cross-Entropy):

LSFT(θ) = − log pθ(y | x) Use one-layer NN
= − log softmax(Wh(x))y

where h(x) is the model representation used for classification (e.g.,
sentence embedding).

After training, you will have a classifier on top of the original model.

39

Beyond categorical labels: Open-Ended Responses

Discussion: When multiple answers can be valid, how should we evaluate
the quality of different responses?

40

Leveraging Human Preference: RLHF

Intuition (pairwise preference):
For a prompt x, humans compare two model responses (yw, yl) and
mark the preferred one (yw).
Train a reward model rϕ(x, y) to predict these human preferences.
Optimize the policy πθ to increase reward while staying close to an
SFT reference policy.

placeholder_comparison.png

Objective (schematic):

max
θ

Ey∼πθ(·|x)[rϕ(x, y)] − β DKL

(
πθ(·|x) ∥πSFT(·|x)

)
Notation: πθ = current policy (i.e., the token probability from current
LLM); rϕ = reward model from human rankings; πSFT = supervised
reference; β controls KL strength.

41

RLHF: Intuition Behind the Math

Objective:

max
θ

Ey∼πθ(·|x)[rϕ(x, y)] − β DKL(πθ ∥πSFT)

Breakdown:
First term: maximize reward rϕ(x, y) (model should generate
responses humans like).
Second term: penalize KL divergence from πSFT → keep the
fine-tuned model close to the supervised baseline.
β: tradeoff between learning new behavior and staying safe/stable.

Intuition: Think of it as: “learn from preferences, but don’t drift too far
from what we know works.”

42

RLHF: Toy Example

Prompt x: "Write a polite email declining a job offer."
Candidate responses:

yw: "Thank you for the offer. After careful thought I
will not be accepting, but I truly appreciate the
opportunity." (preferred)
yl: "I don’t want this job." (less preferred)

Baseline SFT policy πSFT:
Trained on generic instruction data.
Knows how to decline but doesn’t reliably choose polite over blunt
style.
Might assign: πSFT(yw|x) = 0.45, πSFT(yl|x) = 0.40.

RLHF update:
Reward model gives higher score to yw.
New policy πθ shifts probability mass:
πθ(yw|x) = 0.70, πθ(yl|x) = 0.15.

Takeaway: RLHF amplifies preferences while keeping πθ close to πSFT.
43

RLHF: Why the KL Term Matters

Example 1: Creative Writing Request Prompt: "Write a short
story about a detective solving a mystery." Without KL

penalty:
Reward model learns users rate “surprising” and “unique” content
highly.
Output: "The detective was actually the criminal’s pet
goldfish who gained consciousness through quantum
mechanics and solved the case by swimming through
interdimensional portals."
Problem: Technically “surprising,” but nonsensical → reward hacking.

With KL penalty:
Model stays anchored to coherent storytelling patterns from SFT.
Output: The muddy prints led to the garden shed, where
the detective discovered the missing antique vase.

44

Limitations of RLHF: Why Look Beyond It?

RLHF has been very successful, but it comes with challenges:
Expensive and slow: Requires collecting many human preference
labels, plus training a separate reward model and doing RL (e.g.,
PPO).
Instability: Reward model can be gamed → risk of reward hacking if
KL term is not tuned carefully.
Engineering overhead: Complex pipeline (SFT → reward model →
RLHF). Harder to reproduce and scale compared to simple finetuning.
Opaque behavior: Reward models may encode hidden biases;
alignment is indirect.

Motivation: Simpler approaches like Direct Preference Optimization
(DPO) aim to keep the benefits of preference learning but avoid extra
reward models and RL machinery.

45

Direct Preference Optimization (DPO): Overview

Idea: Align to human preferences without training a reward model or
running RL.

Given prompt x and two responses (yw, yl) with yw ≻ yl (human
prefers yw).
Push policy πθ to prefer yw over yl, relative to a reference policy πref
(usually SFT).

Objective:
LDPO = − log σ

(
β (∆log πθ −∆log πref)

)
where ∆log π⋆=log π⋆(yw |x)− log π⋆(yl |x) and σ is logistic.

Takeaway: Increase the margin favoring yw beyond what the reference
(SFT) already does.

46

DPO: Intuition Behind the Math

Pairwise margin view:

∆log πθ = log πθ(yw|x)− log πθ(yl|x) vs ∆log πref

If ∆log πθ > ∆log πref, the model prefers yw more than the reference
⇒ low loss.
If ∆log πθ ≤ ∆log πref, the model has not improved preference margin
⇒ higher loss.
β scales the strength of the margin push (temperature).

Why this works: No explicit reward model; just compare (win, lose) pairs
and teach the model to separate them more than the SFT baseline.

47

DPO: Toy Example (with Reference SFT)

Prompt x: "Explain Newton’s First Law in simple terms."
Responses:

yw (preferred, plain): "Objects keep moving or stay still
unless something pushes or pulls them."

yl (less preferred, jargon): "A body maintains its velocity
vector unless acted on by an external resultant force."

Reference (SFT) policy:

πref(yw|x) = 0.42, πref(yl|x) = 0.38, ∆log πref ≈ log(0.42)− log(0.38) = 0.10

New policy (after DPO):

πθ(yw|x) = 0.65, πθ(yl|x) = 0.20, ∆log πθ ≈ log(0.65)− log(0.20) = 1.18

Interpretation: Margin improved 0.10 → 1.18; the loss drops because πθ
more strongly prefers the human-preferred answer than SFT did.

48

Policy vs. LLM Output: What Gets Updated?

Supervised learning recap:

min
θ

1

N

N∑
i=1

ℓ(fθ(xi), yi)

In RLHF / DPO:

πθ(yt | x, y<t) = softmax(Whθ(x, y<t))

min
θ

1

N

N∑
i=1

ℓpref(πθ(xi), y
w
i , y

l
i)

Policy πθ = LLM token distribution.
Output text = sample from πθ.
Updating θ = same as ERM, but loss ℓpref comes from preferences
(e.g. reward+KL in RLHF, margin in DPO).

Efficiency: LoRA ⇒ only train small low-rank adapters in attention.
49

Fine-Tuning Helps... But Has Drawbacks

Problems with naive fine-tuning / RLHF:
Training instability & reward hacking: Models may game the
reward, producing strange outputs that score well but are unhelpful.
Model collapse: Training on self-generated outputs can degrade
diversity and accuracy over time.
Cost & scale: Full fine-tuning of large LLMs requires huge compute
+ data. Even partial methods (e.g., RLHF with PPO) are still
expensive.

So we ask: Can we get aligned behavior without retraining the whole
model?

50

In-Context Learning (ICL): Few-Shot Prompting

What is In-Context Learning?
Model learns a task from a few examples (shots) provided directly in the
prompt. No fine-tuning or gradient updates are needed!

Prompt = [ex1, . . . , exk︸ ︷︷ ︸
Few-shot examples

, new input︸ ︷︷ ︸
Query

] → Model Output

Examples in Action
Math: Input: 2 → Output:

4
Input: 3 → Output: 9
Input: 4 → ?

Model Output: 16
(Learns the rule x 7→ x2)

Medical: Patient: cough, fever → Flu

Patient: chest pain → Heart Issue
Patient: runny nose → ?

Model Output: Cold
(Learns symptom mapping)

51

Chain-of-Thought (CoT) Prompting

Key Idea: Instead of just asking for the answer, you ask for the process.
This decomposes the problem into simpler, intermediate steps.

Zero-Shot CoT Example
Standard Prompt:
Q: A jug has 1000ml of water. I pour 250ml into a glass and then use
150ml for cooking. How much is left? A: 750ml (Incorrect)

CoT Prompt:
Q: A jug has 1000ml of water. I pour 250ml into a glass and then use
150ml for cooking. How much is left? Let’s think step by step. A:

1 Start with 1000ml.
2 Pouring 250ml into a glass leaves 1000ml - 250ml = 750ml.
3 Using 150ml for cooking leaves 750ml - 150ml = 600ml.

Final Answer: 600ml (Correct)

52

Beyond CoT: Advanced Reasoning Techniques

Simple CoT can fail on harder tasks. Advanced methods structure
reasoning or connect to external tools:

Self-Consistency:
Sample multiple CoT traces with temperature > 0.
Aggregate by majority vote on the final answer.
Reduces reliance on any single flawed chain.

Tree of Thoughts (ToT):
Extends CoT into a tree of reasoning steps.
At each step, generate several “thoughts,” evaluate, and prune.
Useful for planning and search-heavy tasks (games, puzzles).

ReAct (Reasoning + Acting):
Interleaves thoughts with actions (e.g., API calls, web searches).
Grounds reasoning with external tools, overcoming knowledge cutoffs.
Example: search("current price of NVIDIA stock").

53

Beyond CoT: Advanced Reasoning Techniques

Self-Consistency:
Task: “What is 23× 47?”
Run the same CoT multiple times with randomness.
Outputs: [1081, 1081, 981, 1081, 1081].
Majority vote → 1081 (correct).

Tree of Thoughts (ToT):
Task: “Can the 8-puzzle be solved from this start state?”
Model explores moves as a tree: Step 1: try sliding left / up / right.
Step 2: evaluate partial board states.
Prune bad branches → find a valid solution path.

ReAct (Reasoning + Acting):
Task: “Who won the 2024 NBA finals?”
Thought: “Need current info.”
Action: search("2024 NBA finals winner")
Observation: “Boston Celtics defeated Dallas Mavericks.”
Final Answer: “The Celtics won in 2024.”

54

Automating Prompt Engineering

Manual prompt design is brittle, time-consuming, and often fails to
generalize — this is prompt fragility. New methods treat prompt design
as an optimization problem rather than manual trial-and-error.

Automatic Prompt Engineer (APE): LLM generates and scores
candidate instructions.
DSPy: Prompt-as-programming with modules (ChainOfThought,
ReAct); compiler optimizes prompts and examples.
TextGrad: Views prompts as differentiable “parameters,” enabling
gradient-style search.
Microsoft APO: Iterative RL-style framework to refine prompts for
robust performance.

Key idea: Moving from manual prompt engineering to automated
prompt programming.

55

Comparison: Fine-Tuning vs. In-Context Learning

Fine-Tuning (SFT / RLHF / DPO)
Core Idea Update parameters θ: minθ

1
N

∑
ℓ(fθ(xi), yi)

Infrastructure Heavy: GPUs/TPUs, training pipelines, monitoring

Performance Specialized: SOTA in domain tasks; embeds deep knowledge

Challenges Expensive; catastrophic forgetting; alignment tax; collapse risk

Use When... Need domain expertise, safety, and long-term consistency

In-Context Learning (ICL)
Core Idea Keep θ fixed; condition on demos: π(y|x, demo)

Infrastructure Light: API or local inference; no retraining

Performance Flexible: effective few/zero-shot; adapts quickly across tasks

Challenges Prompt fragility; context window limits; inference cost/latency

Use When... Need rapid prototyping, ad-hoc reasoning, or lack labeled data

Takeaway: Fine-tuning ⇒ update θ. ICL ⇒ reuse θ via conditioning.

56

