
140.800: How to AI (for Public Health)

Week 2: From Theory to Practice - Optimization, Neural
Networks, and Text Processing

Yiqun T. Chen
Email: yiqunc@jhu.edu

Schedule office hours via email

Departments of Biostatistics and Computer Science
Data Science & AI Initiative and Malone Center for Engineering in Health

1

The Universal ML Framework: Y = f(X) + ϵ

Quick Recap:
Y : Outcomes we want to predict (diagnosis, treatment response)
X: Features/predictors (symptoms, test results, demographics)
f : The function we’re trying to learn
ϵ: Random noise and unmeasured factors

Key Insight: Machine learning is about finding the best approximation to
f

Today’s Focus: How do we actually find f in practice?
Optimization: How to search for the best f
Neural networks: Flexible function approximators
Text processing: Handling non-numerical data

2

Bias-Variance Tradeoff Recap

Remember our polynomial example:

Degree 1 (High Bias)
True function
Fitted model

0

2

4

6

0.00 0.25 0.50 0.75 1.00
X

Y

Degree 1 (High Bias, Low Variance)

Degree 2 (Just Right)
True function
Fitted model

0

2

4

6

0.00 0.25 0.50 0.75 1.00
X

Y

Degree 2 (Just Right)

Degree 35 (High
Variance)

True function
Fitted model

0

2

4

6

0.00 0.25 0.50 0.75 1.00
X

Y

Degree 35 (Low Bias, High Variance)

The Central Challenge: How complex should our model be?

3

Formal Definition: Bias-Variance Decomposition

For any learning algorithm, the expected prediction error
decomposes as:

E[(Y − f̂(X))2] = Bias2[f̂(X)] + Var[f̂(X)] + σ2

Where:
Bias[f̂(X)] = E[f̂(X)]− f(X)

Var[f̂(X)] = E[(f̂(X)− E[f̂(X)])2]

σ2 is irreducible error (noise in the data)

Biomedicine Example:
High Bias: Simple rule "age > 65 → high risk" (systematic errors)
High Variance: Complex model that changes dramatically with new
patients
Goal: Find the sweet spot that minimizes total error

4

Train/Validation/Test Split Strategy

The Gold Standard Approach:

Training Set (60-70%): Learn model parameters

Validation Set (15-20%): Select model complexity/hyperparameters

Test Set (15-20%): Final unbiased performance evaluation

Why Three Sets?
Training: Optimizes parameters for that specific data
Validation: Prevents overfitting during model selection
Test: Gives honest estimate of real-world performance

5

Cross-Validation: Making Better Use of Data

Problem: Small datasets → unreliable validation estimates
Solution: K-fold cross-validation

1 Divide data into K folds (typically 5 or 10)
2 Train on K-1 folds, validate on 1 fold
3 Repeat K times, each fold as validation once
4 Average performance across all folds

Biomedicine Advantage:
Better use of limited patient data
More robust performance estimates
Reduces impact of "lucky" or "unlucky" splits

Leave-One-Out (LOO): Special case where K = sample size
Maximum use of training data
Computationally expensive for large datasets

6

Modern Data Challenges: Beyond Random Splits

Traditional Assumption: Data is independent and identically distributed
(i.i.d.)

Reality Check: Three major challenges invalidate random splits

1 Temporal Dependencies: Future data differs from past data
2 Distributional Shift: Population characteristics change over time
3 Similarity Constraints: Related samples should not span train/test

Why This Matters: Random splits give overly optimistic performance
estimates

7

Modern Data Challenges: Detailed Examples

1. Temporal Dependencies:
Train on 2020-2022 data, test on 2023 data
Accounts for changes in practice patterns, technology updates
Example: Medical guidelines evolve, treatment protocols change

2. Distributional Shift:
Covariate shift: Demographics change (aging population, migration)
Label shift: Disease prevalence changes (pandemics, seasonal effects)
Example: COVID-19 dramatically shifted disease patterns

3. Similarity Constraints:
Split by institution (hospital-to-hospital generalization)
Split by patient ID (prevent data leakage from same individual)
Split by related cases (family studies, genetic similarities)

8

Types of Features in Biomedical Data

Categorical Features:
Nominal: Gender, race, diagnosis codes (no natural order)
Ordinal: Severity scores, education levels (ordered categories)

Continuous Features:
Lab values, vital signs, age, BMI
May need scaling/normalization

Non-Numerical Features:
Text: Clinical notes, pathology reports
Images: X-rays, MRIs, pathology slides
Sequences: Time series, DNA sequences

Key Challenge: Computers only understand numbers!
Need to encode everything into numerical representation
Encoding choice affects model performance

9

From Manual to Automatic Feature Learning

Traditional Text Processing Pipeline:
1 Tokenization: "Patient has diabetes" → [Patient, has, diabetes]
2 Normalization: Lowercase, remove punctuation
3 Stop word removal: Remove "the", "and", "is"
4 Stemming/Lemmatization: "running" → "run"

Traditional ML: Domain expert designs features manually
Modern Deep Learning: Let gradient descent find optimal features

Key Insight: We will revisit how modern approaches learn representations
automatically

10

Why the Shift to Deep Learning?

Scale and Performance:
Modern datasets too large/complex for manual feature engineering
Deep models consistently outperform hand-crafted features
Same architectures work across domains (vision, language, audio)

11

The Learning Problem: Back to Y = f(X) + ϵ

Empirical Risk Minimization (ERM): Given training data
(x1, y1), ..., (xn, yn), find fθ that minimizes:

L(θ) = 1

n

n∑
i=1

ℓ(fθ(xi), yi)

Key Insight: Loss function ℓ(·, ·) is our way to obtain f(X)

Tells us how "wrong" our predictions are
Guides the learning algorithm toward better solutions
Different losses → different learned functions

Requirements for Loss Functions:
(Almost) differentiable for gradient-based optimization
Should align with what we actually care about

12

The Two Most Important Loss Functions

1. Mean Squared Error (MSE) - For Regression:

ℓMSE(y, ŷ) = (y − ŷ)2

Properties:
Penalizes large errors
Differentiable everywhere
Used when Y is (almost) continuous (blood pressure, age, etc.)

2. Cross-Entropy Loss - For Classification:

ℓCE(y, ŷ) = −
C∑
c=1

yc log(ŷc)

Properties:
yc ∈ {0, 1, . . . , C} (true class), ŷc ∈ [0, 1] (predicted probability for
class c)
Penalizes confident wrong predictions

These two losses power most of modern machine learning! 13

Worked Example: Linear Regression

Problem: Find best line y = ax+ b for data points
Step 1: Define loss function

L(a, b) = 1

n

n∑
i=1

(yi − (axi + b))2

Step 2: Compute gradients

∂L
∂a

= − 2

n

n∑
i=1

xi(yi − axi − b)

∂L
∂b

= − 2

n

n∑
i=1

(yi − axi − b)

Step 3: Update parameters

at+1 = at − η
∂L
∂a

, bt+1 = bt − η
∂L
∂b

14

Gradient Descent: The Core Algorithm

The fundamental optimization algorithm:

θt+1 = θt − η∇θL(θt)

Where:
θ: model parameters (weights)
η: learning rate (step size)
∇θL: gradient of loss with respect to parameters

Intuition:
Gradient points in direction of steepest increase
We want to minimize loss → go in opposite direction
Step size controlled by learning rate η

Key Insight: This same algorithm scales from simple linear regression to
billion-parameter neural networks!

15

Numerical Example: First 5 Iterations

Data: True line is y = 2x+ 1, learning rate η = 0.01

Iteration a (slope) b (intercept) Loss
0 0.000 0.000 225.000
1 1.615 0.244 175.167
2 1.985 0.305 11.196
3 2.069 0.325 2.542
4 2.088 0.334 2.081
5 2.091 0.342 2.052

Observation: Rapid convergence from random initialization (0,0) toward
true values (2,1)
Key Insight: Loss decreases dramatically in first few steps!

16

Gradient Descent in Action

5

10

15

20

2.5 5.0 7.5 10.0
X

Y

Learning Rate

LR = 0.001

LR = 0.01

LR = 0.1

True

Gradient Descent Results

Key Observations:
Different learning rates affect convergence speed
Too small → slow convergence
Too large → may overshoot and diverge
"Just right" → efficient convergence to optimal solution

17

Learning Rate Effects

1e+15

1e+34

1e+53

1e+72

0 25 50 75 100
Iteration

M
ea

n
S

qu
ar

ed
 E

rr
or

Learning Rate

0.001

0.01

0.1

Loss Convergence

Learning Rate Selection:
Start with common values: 0.01, 0.001, 0.1
Monitor loss convergence during training
Use learning rate schedules (decrease over time)
Modern optimizers adapt learning rates automatically

18

Batch Gradient Descent

The Standard Approach: Process all training data at once

L(θ) = 1

n

n∑
i=1

ℓ(fθ(xi), yi)

Advantages:

Disadvantages:

19

Batch Gradient Descent

The Standard Approach: Process all training data at once

L(θ) = 1

n

n∑
i=1

ℓ(fθ(xi), yi)

Advantages:
Stable gradient estimates (true gradient)
Guaranteed convergence to local minimum
Reproducible results

Disadvantages:
Computationally expensive for large datasets
Memory requirements scale with dataset size
Slow convergence (especially early in training)

When to use: Small to medium datasets (<10k samples)
20

Stochastic & Mini-batch Gradient Descent

Stochastic Gradient Descent (SGD):

L(θ) = ℓ(fθ(xi), yi) (single sample)

Uses one sample at a time
Fast updates, but noisy gradients
Can escape local minima due to noise

Mini-batch Gradient Descent: The practical choice

L(θ) = 1

B

∑
i∈batch

ℓ(fθ(xi), yi) (batch size B)

Uses small batches (32, 64, 128, 256)
Good balance of speed and stability
Enables efficient GPU parallelization

21

Modern Optimizers: Beyond Basic SGD

Why Basic SGD Has Problems:
Same learning rate for all parameters
Can get stuck in poor local minima
Sensitive to learning rate choice

Adam Optimizer (Most Popular):
Adaptive learning rates per parameter
Combines momentum with adaptive scaling
Works well "out of the box" for most problems

PyTorch Usage:
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
Also available: SGD, AdamW, RMSprop, etc.
Key Insight: Adam is often the default choice because it "just works" for
most neural network training scenarios.

22

Training Concepts: Key Terminology

Batch Size: Number of samples per update
Common sizes: 32, 64, 128, 256
Smaller = more updates, more noise

Epoch: One complete pass through training data
Example: 1000 samples, batch size 100 → 10 batches per epoch

Shuffling: Randomize sample order between epochs
Prevents memorizing data order
Standard practice for better generalization

23

From Linear to Non-Linear Models

Linear Model Limitations:

y = β0 + β1x1 + β2x2 + ...+ βpxp

Can only model linear relationships
No feature interactions without manual engineering
Limited expressiveness for complex patterns

Neural Network Solution: Add hidden layers with non-linear activation
functions:

h1 = σ(W1x+ b1)

y = W2h1 + b2

σ is activation function - introduces non-linearity
Multiple layers can learn complex feature interactions
Universal approximation: can approximate any continuous function

24

Activation Functions: The Key to Non-linearity

Sigmoid Tanh

Leaky ReLU ReLU

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0

0

1

2

3

4

5

−1.0

−0.5

0.0

0.5

1.0

0

1

2

3

4

5

0.00

0.25

0.50

0.75

1.00

Input (x)

O
ut

pu
t f

(x
)

Common Activation Functions

Central Question: Why do we need non-linear activation functions?
25

Why Non-linearity Matters

The Mathematical Reality:
Without activation functions, multiple layers collapse to single linear
transformation
Example: f(g(x)) = W2(W1x+ b1) + b2 = (W2W1)x+ (W2b1 + b2)

Activation Function Properties:
ReLU: Most popular - simple, efficient, avoids vanishing gradients
Sigmoid: Good for binary classification outputs (0-1 range)
Tanh: Centered around zero, good for hidden layers

Key Insight: Non-linearity enables the network to learn complex patterns
that no linear model can capture

26

Worked Example: 2-Layer Neural Network

Input: x1 = 0.5, x2 = −0.3
Layer 1: h1 = ReLU(W1x+ b1)

W1 =

(
0.2 −0.5
0.8 0.1

)
, b1 =

(
0.3
−0.1

)

z1 =

(
0.2 −0.5
0.8 0.1

)(
0.5
−0.3

)
+

(
0.3
−0.1

)
=

(
0.55
0.27

)
h1 = ReLU(z1) =

(
0.55
0.27

)
Layer 2: y = Sigmoid(W2h1 + b2)

y = Sigmoid(1.2× 0.55 + (−0.7)× 0.27 + 0.1) = Sigmoid(0.571) = 0.639

Compare to Linear: ylinear = 0.5× 0.5 + (−0.2)× (−0.3) + 0.1 = 0.41
Key Insight: Non-linear activation allows the network to learn complex
patterns that linear models cannot capture!

27

Computing Derivatives: Deep Learning ≈ Computing
Derivatives

The Challenge: How do we compute gradients efficiently in deep
networks?
Chain Rule to the Rescue: For a 2-layer network:
y = σ2(W2σ1(W1x+ b1) + b2)

∂L
∂W1

=
∂L
∂y

∂y

∂h1

∂h1

∂z1

∂z1
∂W1

Key Insight: Chain rule enables efficient gradient computation through
complex networks

28

Backpropagation Algorithm

The Three-Step Process:

1 Forward Pass:
Compute predictions layer by layer: x→ h1 → h2 → y
Calculate loss: L(y, ytrue)

2 Backward Pass:
Compute gradients using chain rule (right to left)
Start from loss, propagate back to all parameters

3 Parameter Update:
Apply gradient descent: W←W − η∇WL

This enables training networks with millions of parameters!

29

From Text to Numbers

The Challenge: Computers only understand numbers, but biomedicine
generates lots of text
Clinical Text Examples:

Progress notes, discharge summaries
Radiology reports, pathology reports
Drug prescriptions, adverse event reports
Patient surveys and questionnaires

Text Processing Pipeline:
1 Tokenization: Break text into words/subwords
2 Normalization: Handle case, punctuation, abbreviations
3 Vectorization: Convert to numerical representation
4 Classification: Apply machine learning

30

Bag of Words: A Simple Example

Let’s work through a concrete example with 4 sentences:
Documents:

D1: "The patient has a fever"
D2: "The patient needs a treatment"
D3: "A fever requires the treatment"
D4: "The treatment helps the patient"

Step 1: Create Vocabulary
Unique words: [the, patient, has, a, fever, needs, treatment, requires,
helps]
Vocabulary size: 9 words
Notice: Many common words repeated: "the" (5x), "patient" (3x),
"a" (3x)

Step 2: Build BOW Matrix (next slide)
31

BOW Matrix for Our Example

BOW Matrix (Documents × Vocabulary):

the patient has a fever needs treatment requires helps
D1 1 1 1 1 1 0 0 0 0
D2 1 1 0 1 0 1 1 0 0
D3 1 0 0 1 1 0 1 1 0
D4 2 1 0 0 0 0 1 0 1

Observations:
Each document is now a vector of word counts
Common words dominate: "the" appears 5 times total, "patient" 3
times
We can now compute similarity between documents
Problem: Common words like "the" overwhelm meaningful words

32

TF-IDF: Beyond Simple Word Counts

Problem with BoW: Common words dominate ("the", "a", "patient")
TF-IDF Solution: Weight words by importance

TF-IDF(t, d) = TF(t, d)× log
N

DF(t)

Where:
TF(t, d): Term frequency in document d
DF(t): Number of documents containing term t

N: Total number of documents

33

TF-IDF Intuition: Why It Works

Let’s apply TF-IDF to our example:
Word Frequency Analysis:

"the" appears in 4/4 documents → very common word
"patient" appears in 3/4 documents → common word
"treatment" appears in 3/4 documents → common word
"has", "helps", "requires" appear in 1/4 documents each → rare
words

TF-IDF Weighting Results:
Very low weight: "the" (appears in all docs)
Low weight: "patient", "treatment" (appear in many docs)
High weight: "has", "helps", "requires" (rare, discriminative)

Key Insight: TF-IDF automatically identifies the most informative words
for distinguishing between documents!

34

TF-IDF Matrix: Actual Calculated Weights

TF-IDF Matrix for Our Example:

the patient has a fever needs treatment requires helps
D1 0.00 0.10 0.30 0.00 0.30 0.00 0.00 0.00 0.00
D2 0.00 0.10 0.00 0.00 0.00 0.30 0.10 0.00 0.00
D3 0.00 0.00 0.00 0.00 0.30 0.00 0.10 0.30 0.00
D4 0.00 0.10 0.00 0.00 0.00 0.00 0.10 0.00 0.30

Key Observations:
"the" gets weight 0.00 (appears in all documents - not discriminative)
Unique words get weight 0.30: "has", "fever", "needs", "requires",
"helps"
Common words get lower weights: "patient", "treatment" (0.10)
TF-IDF automatically downweights common words and emphasizes
rare ones

35

The Word Order Problem in BOW

The Classic "Dog Bites Man" Example:
"Dog bites man" → Common occurrence (not newsworthy)
"Man bites dog" → Unusual event (front-page news!)

BOW Representation: Identical vectors!

Word dog bites man
Count 1 1 1

The Problem:
Completely different meanings and newsworthiness
BOW treats them identically - subject/object roles lost
Word order determines who does what to whom

36

N-grams: Capturing Some Context

Problem: BoW loses word order
Solution: N-grams capture local context

Unigrams: individual words
Bigrams: pairs of consecutive words
Trigrams: triplets of consecutive words

Medical Example: "Patient has no chest pain"
Unigrams: [patient, has, no, chest, pain]
Bigrams: [patient has, has no, no chest, chest pain]
Key insight: "no chest" helps detect negation

Interactive Demo: Try different n-gram combinations on medical text
classification!

37

More BOW Failures: Negation

Negation Flips Meaning:
"I liked the movie" → Positive sentiment
"I didn’t like the movie" → Negative sentiment

BOW Problem: Same words, similar counts; scope of "not" is lost

N-grams: Help only locally ("didn’t like") but explode feature space

Why Embeddings Work Better:
Contextual models (like BERT) bind "not" to "like" via sequence
context
Bidirectional attention captures negation scope
Learn that "didn’t like" ≈ "disliked" in vector space

38

More BOW Failures: Paraphrase and Synonyms

Semantic Similarity with Different Words:
"He purchased a vehicle"
"He bought a car"

Same meaning, different words!

BOW Problem: Low word overlap → vectors far apart

Why Embeddings Work Better:
Distributed representations place synonyms near each other
"purchased" ≈ "bought", "vehicle" ≈ "car" in vector space
Sentence encoders keep semantically similar sentences close
Learn meaning from context, not just word identity

39

More BOW Failures: Long-Distance Dependencies

Dependencies Across Clauses:
"The book that you recommended was fantastic"
"book" and "was" are grammatically linked but separated by words

BOW Problem: Can’t model dependency between "book" and "was"
N-grams Problem: Can’t stretch reliably across long distances

Why Embeddings Work Better:
Self-attention (in Transformers) links distant tokens directly
Each word can "attend" to any other word in the sentence
Models learn grammatical relationships regardless of distance

40

More BOW Failures: Word Sense Disambiguation

Same Word, Different Meanings:
"I went to the bank to deposit money" (financial institution)
"We sat by the river bank" (riverside)

BOW Problem: One column per token; no sense differentiation

Why Embeddings Work Better:
Contextual vectors (like BERT) give different embeddings for different
senses
"bank" + "deposit money" → financial meaning
"bank" + "river" → geographical meaning
Context determines representation dynamically

41

From Sparse to Dense Representations

Problem with BoW and TF-IDF:
Sparse, high-dimensional vectors (vocabulary size = 10,000+)
No semantic relationships: "doctor" and "physician" are unrelated
Bag of words loses all word order information

Solution: Dense Word Embeddings
Map each word to a dense vector (typically 100-300 dimensions)
Words with similar meanings have similar vectors
Capture semantic relationships: king - man + woman ≈ queen

Key Insight: "You shall know a word by the company it keeps"

42

Word2Vec: Learning Word Representations

Skip-gram Architecture: Single hidden layer neural network

Mathematical Objective: Maximize log probability of context words

J(θ) =
1

T

T∑
t=1

∑
−c≤j≤c,j ̸=0

log p(wt+j |wt)

Where:
T = total words in corpus
c = context window size
wt = target word at position t
wt+j = context word at position t+ j

Softmax Probability:

p(wo|wc) =
exp(uTo vc)∑|V |
i=1 exp(u

T
i vc)

Where vc = center word vector, uo = context word vector
43

Word2Vec: Concrete Training Example

Training Sentence: "The patient has diabetes and requires treatment"

Skip-gram Training Pairs (window size = 2):

Target → Context
patient → [The, has]
has → [The, patient, diabetes]
diabetes → [patient, has, and]
and → [has, diabetes, requires]
requires → [diabetes, and, treatment]

Learning Process:
1 Initialize random 300-dim vectors for each word
2 For each training pair, predict context probability
3 Use gradient descent to adjust vectors to increase probability
4 Similar words end up with similar vectors through shared contexts

44

Word Embedding Properties: Similarity and Bias

Semantic Similarity (Cosine Distance):

Word Most Similar Words
doctor physician (0.82), surgeon (0.79), clinician (0.76)
diabetes hypertension (0.71), cardiovascular (0.68)
treatment therapy (0.85), medication (0.73)

The Famous Analogy: Vector Arithmetic

king−man + woman ≈ queen

Why This Works:
king−man ≈ "royalty" concept
woman+ "royalty" ≈ female royalty = queen
Linear relationships in embedding space capture semantic relationships

45

Word Embedding Bias: A Critical Issue

Embeddings Inherit Training Data Biases:

Gender Bias Examples:
"Programmer" closer to "he" than "she"
"Nurse" closer to "she" than "he"
"Doctor" historically closer to male pronouns

Racial and Cultural Biases:
Names associated with race affect sentiment scores
Historical medical literature biases get encoded
Geographic and socioeconomic biases persist

Critical for Biomedical AI:
Can perpetuate healthcare disparities
May misclassify based on patient demographics
Requires careful auditing and debiasing techniques
Active area of AI ethics research

46

Why Sequence Matters: A Critical Example

Famous Example:
"John loves Mary"
"Mary loves John"

BoW vectors are identical:

Word john loves mary
Count 1 1 1

The Problem: Completely different relationships, but BOW treats them
as identical!
Solution: Sequential processing captures who does what to whom.

47

Sequential Processing: How Order Saves the Day

Let’s trace through: "The drug kills cancer cells effectively"

Sequential Processing Steps:
1 Read "The" → Article, something specific coming
2 Read "drug" → Subject identified: pharmaceutical agent
3 Read "kills" → Action: drug is the agent doing the killing
4 Read "cancer" → Target specification: what’s being killed
5 Read "cells" → Target refinement: cancer cells specifically
6 Read "effectively" → Evaluation: the killing is successful

Key Insight: Sequential processing captures who does what to whom
Agent: drug (good guy)
Action: kills
Target: cancer cells (bad guys)
Result: Therapeutic success!

48

Sequential Model Training: The Setup

Core Training Objective: Predict next word given previous context

Training Example:

"Patient has diabetes and "

Model Task:
Input: "Patient has diabetes and"
Goal: Predict probability distribution over next word
Possible completions: "needs" (0.3), "requires" (0.2), "shows"
(0.15), ...

Self-Supervised Learning: We can create millions of training examples
from any text corpus!

49

Training Process: Step by Step

Training Sentence: "Patient has diabetes and requires insulin treatment"

Training Steps:
1 Step 1: "Patient" → predict "has"
2 Step 2: "Patient has" → predict "diabetes"
3 Step 3: "Patient has diabetes" → predict "and"
4 Step 4: "Patient has diabetes and" → predict "requires"
5 Step 5: "Patient has diabetes and requires" → predict "insulin"

Key Insight: One sentence provides multiple training examples!
Learning Process: Gradient descent updates model to minimize prediction
errors

50

What Sequential Models Learn

Through Next-Word Prediction, Models Learn:

1. Grammar and Syntax:
"Patient has" (not "Patient have")
Verb agreement, word order, sentence structure

2. Medical Domain Knowledge:
"diabetes and hypertension" (common comorbidities)
"insulin injection" (treatment relationships)

3. Context-Dependent Meanings:
"acute" means different things in "acute pain" vs "acute care"
Model learns these contextual nuances automatically

4. Long-Range Dependencies:
"Patient with diabetes... [50 words later] ...needs glucose monitoring"

51

Current Approach Limitations

Text Processing Issues:
Sparsity: Most features are zero
High dimensionality: Vocabulary can be huge
Limited context: N-grams only capture local patterns
Synonyms: "MI" vs "heart attack" treated differently
Word order: "patient improved" vs "patient not improved"

Biomedicine-Specific Text Challenges:
Context-dependent meanings: "Positive" (good outcome vs test
result)
Complex temporal relationships: Treatment sequences, disease
progression
Domain expertise required: Clinical validation and interpretation
Abbreviations and negation: Require specialized handling

52

The Path to Modern AI

This Week’s Foundation:
Optimization is central - gradient descent powers everything
Neural networks are universal - can learn complex patterns
Text needs special handling - converting language to numbers
End-to-end learning - automatic feature discovery

Key Insight: Modern LLMs use the same core principles (gradient descent,
backprop) but at massive scale with better architectures

53

Evolution to Modern Systems

What Changed:
Scale: Billions of parameters vs thousands
Architecture: Transformers vs simple MLPs
Training data: Internet-scale vs small labeled sets
Compute: Thousands of GPUs vs single machines

What Stayed the Same:
Gradient descent optimization
Backpropagation algorithm
Numerical text representation
Loss function minimization

54

	Recap: Week 1 Foundations
	Data Splitting and Validation
	Feature Engineering
	Text Processing Foundations
	The Modern ML Revolution
	Loss Functions: Measuring What We Care About
	Multi-Layer Perceptrons
	Text Processing for Biomedicine
	Word Embeddings: Dense Representations
	Beyond Bag of Words: Sequential Models
	Limitations and Path Forward

