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Recent AI Breakthroughs in Healthcare

This Month’s Headlines:
Google’s Med-Gemini: Multimodal AI for clinical reasoning
OpenAI GPT-4V: Medical image interpretation capabilities
FDA approvals: AI-powered diagnostic tools hitting clinics
Epic integration: LLMs in electronic health records

Why This Matters:
AI is transitioning from research to real clinical practice
Healthcare organizations need AI-literate professionals (or others
will continue to "ll the void!)
Understanding how these systems work is becoming essential

The Big Question: How do we harness this technology responsibly and
e#ectively for public health?
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Supervised Learning

What it is: Learn from labeled examples

Health example: X-ray images→ pneumonia diagnosis

Key insight: We tell the machine the "right answer" during training
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Unsupervised Learning

What it is: Find hidden patterns in unlabeled data

Health example: Group patients with similar symptoms

Key insight: Machine discovers patterns we might miss
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Reinforcement Learning

What it is: Learn through trial and error with rewards

Health example: Optimize drug dosing through patient outcomes

Key insight: Like training a clinician through experience
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Self-Supervised Learning - Simple Example

What it is: Learn from data’s own structure (no external labels needed)

Simple Example - Fill in the Blank:
Sentence: "The patient has [MASK] blood pressure"
AI learns: "high", "low", "normal" are likely answers
No doctor needed to label this training data!
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Why Self-Supervised Learning Matters

Key Bene!ts:

Learning true representations from data structure

Foundation for modern LLMs like GPT and BERT
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Regression vs Classification

Regression (Continuous Outcomes):
What we predict: Blood pressure, length of stay, drug dosage

Classi!cation (Categorical Outcomes):
What we predict: Disease/no disease, risk category

Why Di"erent Loss Functions?
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The Universal ML Framework

Every supervised learning problem can be written as:

Y = f(X) + ω

What Each Component Represents:
Y : What we want to predict (outcome)
X : What we have to predict with (features)
f : The relationship we want to learn
ω: Random error/noise we can’t predict

Our Learning Strategy:
We’ll tackle these components in order: Y , X , f , ω
Understanding each component helps us make better modeling
decisions
This framework applies to any domain, not just healthcare
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Component 1: Y (Outcomes)

Di"erent Types of Outcomes:
Continuous: Blood pressure (mmHg), length of stay (days)
Binary: Disease/no disease, alive/dead
Categorical: Risk level (low/medium/high)
Ordinal: Pain scale (1-10), stage of disease
Open-ended: Free text responses, clinical notes
Image outcomes: Segmentation maps, image quality scores
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Brainstorm: Y (Outcomes)

Exercise:
What healthcare outcomes are you interested in predicting?
What type of outcome variable would each be?
How might the outcome type a#ect our modeling approach?
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Component 2: X (Features)

Types of Features in Healthcare:
Continuous: Lab values, vital signs, measurements
Categorical: Gender, insurance type, hospital unit
Binary: Presence/absence of conditions
Ordinal: Severity scores, pain levels
Text: Clinical notes, discharge summaries
Images: X-rays, pathology slides, MRIs
Time series: Continuous monitoring data
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Brainstorm: X (Features)

Exercise:
For your outcome of interest, what features might be predictive?
What types of features would they be?
What challenges might each feature type present?
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Feature Engineering (Human-designed)

Traditional Approach:
Experts manually design relevant features
Example: "Age > 65", "BMI category", "Number of medications"
Works well with domain knowledge
Limited by human creativity and time
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Feature Learning (AI-discovered)

Modern Approach:
AI automatically learns relevant patterns
Example: Neural network "nds complex combinations
Can discover non-obvious relationships
Requires lots of data and computation
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Healthcare Data Reality

In Practice:
Both approaches have their place
Traditional methods: interpretable, work with small datasets
Modern methods: powerful, but need more data and compute
Hybrid approaches often work best
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Component 3: f (The Function)

Di"erent Modeling Approaches by Complexity:
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Simple/Interpretable Models

Linear regression, logistic regression

Easy to understand and explain
Work well with smaller datasets
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Moderate Complexity Models

Random forests, gradient boosting (XGBoost)

Balance between performance and interpretability
Handle mixed data types well
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High Complexity Models

Neural networks, deep learning models

Can capture very complex patterns
Need lots of data and computational resources
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Component 4: ω (Making Inferences)

The Error Term Represents:
Random variation: Things we can’t predict
Measurement error: Imperfect data collection

Statistical Inference Questions:
How con"dent are we in our predictions?
Which features are most important?
Will this generalize to new populations?
What’s the uncertainty around our estimates?
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Why Statistical Inference Matters

In Healthcare:

Clinical decisions require uncertainty estimates

Regulatory approval requires statistical evidence
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The Complete Framework

For Any Healthcare ML Problem, Ask:
1 What am I trying to predict? (Y - outcome type)
2 What data do I have? (X - feature types and quality)
3 What’s the right model complexity? (f - simple vs complex)
4 How do I quantify uncertainty? (ω - inference and con"dence)

This Framework Scales:
Works for simple logistic regression
Works for complex neural networks
Works for modern foundation models
Always start with these four questions

Next Steps: We’ll dive deeper into each component and see how
modern AI tackles these challenges at scale
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True Function (Unknown in Practice)

f(x) = 5x² + 0.5x + 0.1
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Polynomial Fitting Examples

True function
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Polynomial Fitting Examples

True function
Fitted model
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Polynomial Fitting Examples

True function
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The Bias-Variance Tradeo!

Two Sources of Prediction Error:
Bias: How far o# is our model on average?
Variance: How much do predictions vary with di#erent training
sets?

Healthcare Example - Predicting Length of Stay:
High Bias/Low Variance: Simple linear model (always predicts
average)
Low Bias/High Variance: Complex model (memorizes training data)
Sweet Spot: Balanced model that generalizes well
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The Importance of Test Sets

WhyWe Need Held-Out Data:
Problem: Models can memorize training data perfectly
Solution: Keep some data completely hidden during training
Test on this data: Shows how well model generalizes to new
patients

Data Splitting Strategy:
Training Set: Learn model parameters
Validation Set: Tune hyperparameters/model selections
Test Set: Final evaluation
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The Importance of Test Sets

WhyWe Need Held-Out Data:
Problem: Models can memorize training data perfectly
Solution: Keep some data completely hidden during training
Test on this data: Shows how well model generalizes to new
patients

Data Splitting Strategy:
Training Set: Learn model parameters
Validation Set: Tune hyperparameters/model selections
Test Set: Final evaluation

Modern Dataset Considerations:
Temporal splits: Train on 2020-2022, test on 2023
Hospital splits: Train on Hospital A, test on Hospital B
Participant splits: Ensure no patient data leakage across sets

31



Overcoming Bias-Variance Issues

We will talk more about how to overcome these challenges later

Coming up: Techniques for "nding the right balance
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Key Takeaways

Today’s Foundation:
1 Learning Types: Supervised, unsupervised, reinforcement,

self-supervised
2 Supervised Learning: Regression vs classi"cation with di#erent

approaches
3 Universal Framework: Y = f(X) + ω - a way to think about any ML

problem
4 Components Matter: Y, X, f, ω each require di#erent considerations
5 Model Complexity: Bias-variance tradeo# is fundamental
6 Test Sets: Essential for honest evaluation

This Foundation Enables:
Understanding how modern AI systems work
Making good modeling choices for your problems
Communicating e#ectively about AI projects
Building robust, reliable healthcare AI systems
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