140.800: How to AI (for Public Health)

Learning Types, Evaluation, and Problem Formulation

Yiqun T. Chen Email: yiqunc@jhu.edu Schedule office hours via email

Departments of Biostatistics and Computer Science
Data Science & Al Initiative and Malone Center for Engineering in Health

Recent Al Breakthroughs in Healthcare

This Month's Headlines:

- Google's Med-Gemini: Multimodal AI for clinical reasoning
- OpenAI GPT-4V: Medical image interpretation capabilities
- FDA approvals: Al-powered diagnostic tools hitting clinics
- Epic integration: LLMs in electronic health records

Why This Matters:

- Al is transitioning from research to real clinical practice
- Healthcare organizations need AI-literate professionals (or others will continue to fill the void!)
- Understanding how these systems work is becoming essential

The Big Question: How do we harness this technology responsibly and effectively for public health?

Supervised Learning

What it is: Learn from labeled examples

Health example: X-ray images → pneumonia diagnosis

Key insight: We tell the machine the "right answer" during training

Unsupervised Learning

What it is: Find hidden patterns in unlabeled data

Health example: Group patients with similar symptoms

Key insight: Machine discovers patterns we might miss

Reinforcement Learning

What it is: Learn through trial and error with rewards

Health example: Optimize drug dosing through patient outcomes

Key insight: Like training a clinician through experience

Self-Supervised Learning - Simple Example

What it is: Learn from data's own structure (no external labels needed)

Simple Example - Fill in the Blank:

- Sentence: "The patient has [MASK] blood pressure"
- Al learns: "high", "low", "normal" are likely answers
- No doctor needed to label this training data!

Sample. The patient has high blood pressure

The patient has — blood pressure predict

The patient has — blood pressure predict

as opposed to

supervised

Why Self-Supervised Learning Matters

Key Benefits:

Learning true representations from data structure

Foundation for modern LLMs like GPT and BERT

Regression vs Classification (supervised learning)

Regression (Continuous Outcomes):

• What we predict: Blood pressure, length of stay, drug dosage

Classification (Categorical Outcomes):

What we predict: Disease/no disease, risk category

Why Different Loss Functions?

The Universal ML Framework

Every supervised learning problem can be written as:

$$Y = f(X) + \epsilon$$

What Each Component Represents:

- Y: What we want to predict (outcome)
- X: What we have to predict with (features)
- f: The relationship we want to learn
- ϵ : Random error/noise we can't predict

Our Learning Strategy:

- We'll tackle these components in order: Y, X, f, ϵ
- Understanding each component helps us make better modeling decisions
- This framework applies to any domain, not just healthcare

Component 1: Y (Outcomes)

Different Types of Outcomes:

- Continuous: Blood pressure (mmHg), length of stay (days)
- Binary: Disease/no disease, alive/dead
- Categorical: Risk level (low/medium/high)
- Ordinal: Pain scale (1-10), stage of disease
- Open-ended: Free text responses, clinical notes
- Image outcomes: Segmentation maps, image quality scores

Brainstorm: Y (Outcomes)

Exercise:

- What healthcare outcomes are you interested in predicting?
- What type of outcome variable would each be?
- How might the outcome type affect our modeling approach?

Component 2: \overline{X} (Features)

Types of Features in Healthcare:

- Continuous: Lab values, vital signs, measurements
- Categorical: Gender, insurance type, hospital unit
- Binary: Presence/absence of conditions
- Ordinal: Severity scores, pain levels
- Text: Clinical notes, discharge summaries
- Images: X-rays, pathology slides, MRIs
- Time series: Continuous monitoring data

Brainstorm: X (Features)

Exercise:

- For your outcome of interest, what features might be predictive?
- What types of features would they be?
- What challenges might each feature type present?

Feature Engineering (Human-designed)

Traditional Approach:

- Experts manually design relevant features
- Example: "Age > 65", "BMI category", "Number of medications"
- Works well with domain knowledge
- Limited by human creativity and time

Feature Learning (Al-discovered)

Modern Approach:

- Al automatically learns relevant patterns
- Example: Neural network finds complex combinations
- Can discover non-obvious relationships
- Requires lots of data and computation

Healthcare Data Reality

In Practice:

- Both approaches have their place
- Traditional methods: interpretable, work with small datasets
- Modern methods: powerful, but need more data and compute
- Hybrid approaches often work best

Component 3: f (The Function)

Different Modeling Approaches by Complexity:

Simple/Interpretable Models

Linear regression, logistic regression

- Easy to understand and explain
- Work well with smaller datasets

```
( non-image, non-text)
```

Moderate Complexity Models

Random forests, gradient boosting (XGBoost)

- Balance between performance and interpretability
- Handle mixed data types well

High Complexity Models

Neural networks, deep learning models

- Can capture very complex patterns (esp. image, text datasets)
- Need lots of data and computational resources

Component 4: ϵ (Making Inferences)

The Error Term Represents:

- Random variation: Things we can't predict
- Measurement error: Imperfect data collection

Statistical Inference Questions:

- How confident are we in our predictions?
- Which features are most important? (SHAPIEY VALUES)
- Will this generalize to new populations? (Vigni pational Shift)
- What's the uncertainty around our estimates?

Why Statistical Inference Matters

In Healthcare:

Clinical decisions require uncertainty estimates

Regulatory approval requires statistical evidence

The Complete Framework

For Any Healthcare ML Problem, Ask:

1=P(x)+E

- What am I trying to predict? (Y outcome type)
- What data do I have? (X feature types and quality)
- **1** What's the right model complexity? (f) imple vs complex) \sim
- **1** How do I quantify uncertainty? (ϵ inference and confidence)

This Framework Scales:

- Works for simple logistic regression
- Works for complex neural networks
- Works for modern foundation models
- Always start with these four questions

Next Steps: We'll dive deeper into each component and see how modern AI tackles these challenges at scale

Training Data

True Function (Unknown in Practice)

Polynomial Fitting Examples

Polynomial Fitting Examples

Polynomial Fitting Examples

The Bias-Variance Tradeoff

Two Sources of Prediction Error:

- Bias: How far off is our model on average?
- Variance: How much do predictions vary with different training sets?

Healthcare Example - Predicting Length of Stay:

- High Bias/Low Variance: Simple linear model (always predicts average)
- Low Bias/High Variance: Complex model (memorizes training data)
- Sweet Spot: Balanced model that generalizes well

The Importance of Test Sets

Why We Need Held-Out Data:

- Problem: Models can memorize training data perfectly
- Solution: Keep some data completely hidden during training
- Test on this data: Shows how well model generalizes to new patients

Data Splitting Strategy:

- Training Set: Learn model parameters
- > Validation Set: Tune hyperparameters/model selections
 - Test Set: Final evaluation

The Importance of Test Sets

Why We Need Held-Out Data:

- Problem: Models can memorize training data perfectly
- Solution: Keep some data completely hidden during training
- Test on this data: Shows how well model generalizes to new patients

Data Splitting Strategy:

- Training Set: Learn model parameters
- Validation Set: Tune hyperparameters/model selections
- Test Set: Final evaluation

Modern Dataset Considerations:

- Temporal splits: Train on 2020-2022, test on 2023
- Hospital splits: Train on Hospital A, test on Hospital B
- Participant splits: Ensure no patient data leakage across sets

Overcoming Bias-Variance Issues

We will talk more about how to overcome these challenges later

Coming up: Techniques for finding the right balance

Key Takeaways

Today's Foundation:

- Learning Types: Supervised, unsupervised, reinforcement, self-supervised
- Supervised Learning: Regression vs classification with different approaches
- **3 Universal Framework:** $Y = f(X) + \epsilon$ a way to think about any ML problem
- **①** Components Matter: Y, X, f, ϵ each require different considerations
- Model Complexity: Bias-variance tradeoff is fundamental
- Test Sets: Essential for honest evaluation

This Foundation Enables:

- Understanding how modern AI systems work
- Making good modeling choices for your problems
- Communicating effectively about AI projects
- Building robust, reliable healthcare AI systems

Key Takeaways

Today's Foundation:

- Learning Types: Supervised, unsupervised, reinforcement, self-supervised
- Supervised Learning: Regression vs classification with different approaches
- **3 Universal Framework:** $Y = f(X) + \epsilon$ a way to think about any ML problem
- **①** Components Matter: Y, X, f, ϵ each require different considerations
- Model Complexity: Bias-variance tradeoff is fundamental
- Test Sets: Essential for honest evaluation

This Foundation Enables:

- Understanding how modern AI systems work
- Making good modeling choices for your problems
- Communicating effectively about AI projects
- Building robust, reliable healthcare AI systems