140.800: How to Al (for Public Health)
Al Agents and the ReAct Framework

Yigun T. Chen
Email: yiqunc@jhu.edu
Schedule office hours via email

Departments of Biostatistics and Computer Science
Data Science & Al Initiative and Malone Center for Engineering in

Health

1/44



APIs as the Building Blocks of Action
Q: What can an LLM not do without tools?

2/44



Capability 1: Accessing Real-Time Data

What'’s the first thing you do when you need a current
fact? You search for it.

A vanilla LLM’s knowledge is frozen at its last training date.
Agents overcome this by using tools to query the live internet.

» Tool Used: Web Search API (e.g., Google, Tavily).

» Example Queries:

» "What's the weather like in Baltimore right now?"
» "What was the final score of the Orioles game last night?"
» "What is the current stock price of Google?"

3/44



Capability 2: Grounding in Verifiable Sources

How can we force an agent to "show its work" and
fight hallucinations?

Instead of just the open web, agents can search specific,
high-quality knowledge bases to provide reliable answers with
citations.

» Tool Used: Database Connector (e.g., PubMed API, ArXiv,
internal company wiki).

» Example Task:
» User: "Summarize recent findings on metformin and cancer,
with citations."
» Agent Action: Query the PubMed API for relevant paper
abstracts.
» Result: A summary grounded in specific, verifiable scientific
literature.

4/44



Capability 3: Executing Code & Analyzing Data

Moving from a linguistic model to a computational
engine.

A vanilla LLM can write code, but an agent can execute it in a
secure environment (like a Python interpreter). This unlocks all
forms of quantitative reasoning.

» Tool Used: Code Interpreter / Jupyter Kernel.

» Example Tasks:

» Solve a complex physics problem.
» Analyze a user-uploaded CSV file to find trends.
» Generate a data visualization plot.

5/44



Capability 4: Taking Actions in the World

Turning natural language into meaningful, real-world
actions.

Agents can connect to thousands of third-party APIs to operate
other software and services on the user’s behalf.

» Tools Used: Google Calendar API, Gmail API, Zapier, etc.

» Example Actions:
» "Find me a flight to San Francisco next Tuesday and put a
hold on it."
» "Draft an email to my team about the new project deadline."
» "Add a dentist appointment to my calendar for Friday at 3
PM."

6/44



More on Grounding in Verifiable Sources

Why is an unsourced answer from an LLM potentially
dangerous?

» Fact Fabrication (Hallucination):

» Models confidently state incorrect "facts.”
» They may invent plausible but fake URLs, book titles, or
scientific citations.

» Lack of Attribution:

» Answers are generated from a "black box" with no sources.
» |t is impossible to verify where the information came from.

> Stale Knowledge: The world moves on, but the LLM's data
is frozen in time.

7/44



Solution: Retrieval-Augmented Generation (RAG)
What if we gave the LLM an "open-book" exam?

Instead of relying solely on its internal (and sometimes faulty)
memory, we first retrieve relevant information from a trusted,
external knowledge source.

RAG combines the best of two worlds:

» Fast Information Retrieval: To find relevant, up-to-date
facts from a specific knowledge base (e.g., recent papers,
company docs).

» Fluent Language Models: To synthesize the retrieved facts
into a coherent, human-readable answer.

8/44



How RAG Works: Retrieve — Generate
Trace the data: Where does the "grounding" happen in RAG?

9/44



Building a RAG System:

How do we move from a simple mechanism to an
intelligent process?

An advanced RAG system is not a fixed pipeline. It's a dynamic
process that must intelligently answer three core questions at
every step:

1. What should I retrieve?

2. How is knowledge represented?

3. How do | synthesize the results?

10/44



Step 1: Deciding What to Retrieve

Do you use the same search strategy for every question
you have?

11/44



Step 1: Deciding What to Retrieve

Do you use the same search strategy for every question
you have? An intelligent agent must first understand the user’s
intent and then select the best source and query method.

» Adaptive Retrieval (When to search):

» The agent first decides if retrieval is even necessary. For
common knowledge ("What is the capital of France?"), it can
answer from memory.

» Query Transformation (How to ask):

» The agent rewrites a user’s vague query into several precise,
targeted questions optimized for the knowledge base.

» Source Selection (Where to look):
» The agent chooses the best knowledge source: searching
the web for current events, a vector database for internal
documents, or a knowledge graph for factual relationships.

12/44



Strategy 2: How to Represent Knowledge

The Challenge: How do you prepare documents so a machine
can find the relevant information?

13/44



Strategy 2: How to Represent Knowledge

The core idea is to convert text into numerical vectors and find
the ones that are closest to the user’s query in a
high-dimensional space. This involves three steps:

1. Chunk: Split original documents into small, manageable text
passages (c1, co, . . ., Cn).

2. Embed: Convert each text chunk c into an embedding
vector c.

3. Search: The user’s query ¢ is also embedded into a vector q.
The system then calculates the similarity between the
query vector and all chunk vectors, often using cosine
similarity. We then return the top-N chunks.

14/44



Strategy 2: How to Represent Knowledge

The quality of retrieval depends entirely on how well the
underlying knowledge is structured and indexed.

> Intelligent Chunking:

» Instead of splitting documents into arbitrary fixed-size
pieces, semantic chunking divides text based on topical
shifts. This ensures each chunk contains a complete thought.

» Multi-Representation Indexing:
» A document is indexed in multiple ways. We can create and
embed:
» Summaries of long passages.
Hypothetical questions that a chunk answers.
» This gives the retriever more ways to match a query to the
right context.

v

15/44



Strategy 3: How to Synthesize Information

The Final Step: What should the LLM do with the retrieved
documents?

16/44



Strategy 3: How to Synthesize Information

What should the LLM do with a dozen retrieved
documents?
» Re-ranking for Relevance:

» The initial retrieval might return 20+ documents. A fast,
secondary model skims these results to push the most
relevant ones to the top.

> |terative Refinement & Self-Correction:

» The LLM doesn't trust the first retrieval pass. It checks if the
context is sufficient. If not, it can autonomously trigger a
new search with a refined query.

» Handling Contradictions:

> |f retrieved sources disagree, an advanced LLM can highlight
the conflict or even try to determine which source is more
credible.

17/44



Another Motivation: the Brittleness of LLM Arithmetic

LLMs are next-token predictors, not logical calculators.
They are designed to recognize and replicate linguistic patterns,
not to execute mathematical rules. This works for common facts

but fails for complex calculations.

Easy Problem (Memorized
Pattern)
» User: 2 *8 =7
> LLM: 16
» The answer is recalled
from patterns in its

training data, not
computed.

Hard Problem (Requires Logic)

» User: 12345 * 54321 =
7

» LLM: 670,592,745
(Wrong!)

» The LLM is just guessing
tokens, not carrying digits.

» (Correct answer:
670,481,265)

18/44



If you can’t *be* the
calculator...

...why not just use one?



The Solution: From Doer to Delegator

The LLM's real skill is translating language into code.
The new approach is to teach the LLM to recognize a math
problem and delegate it to a tool that is perfect for the job: a
calculator like Python or an R interpreter.

20/44



The Solution: From Doer to Delegator

The LLM'’s real skill is translating language into code.

The new approach is to teach the LLM to recognize a math
problem and delegate it to a tool that is perfect for the job: a
calculator like Python or an R interpreter.

1. Thought: The user is asking for a precise calculation. My
internal arithmetic is unreliable. | will use my Python
interpreter tool.

2. Action (Code Generation): The LLM writes code to solve
the problem.
print (12345 * 54321)

3. Observation (Tool Output): The interpreter executes the
code and returns the correct result.
670481265

4. Final Answer: The LLM uses the tool’s output to give the
user a reliable answer.

21/44



The Tool-Use Revolution: Beyond the Calculator

The code interpreter is just one tool. What if the
LLM could use any program?

By treating any software with an API as a potential tool, the
LLM evolves from a text generator into a universal controller for
digital tasks.

Example Toolkit:
> Web Browsers & Search Engines:

» To answer questions about current events or find the latest
research.

» Databases (e.g., SQL):
» To query company sales data or retrieve user information
from a structured database.

» Third-Party APIs:

» To book a flight, reserve a table at a restaurant, or add an
event to a calendar.

22/44



We have the tools. But how does the LLM
decide...

...what to do next?

How do you solve a complex problem that requires
multiple steps and multiple tools?

23/44



Philosophy 1: Plan-then-Execute

First, create a complete plan, then follow it exactly.

24/ 44



Philosophy 1: Plan-then-Execute

First, create a complete plan, then follow it exactly.

In this model, the LLM first thinks through the entire problem
and generates a complete, multi-step plan from start to finish.
It then executes each step of that plan sequentially without
deviation.

» Analogy: Writing a detailed, step-by-step recipe before you
start cooking.

» Key Characteristic: Reasoning is done entirely upfront. The
execution phase is "blind" to real-time events.

» Primary Risk: This approach is brittle. If an early step fails
or produces an unexpected result, the entire pre-made plan

can be derailed.

25/44



Philosophy 2: Interleaved Reasoning & Acting
A Flexible Alternative: Think a little, act a little, and repeat.

26/44



Philosophy 2: Interleaved Reasoning & Acting
Think a little, act a little, and repeat.

This alternative avoids rigid, long-term plans. Instead, the LLM
interleaves its reasoning process with actions, adapting its
strategy based on real-time feedback from its tools.

» Analogy: Navigating a new city with a map, checking your
position and adjusting your route after every turn.

» Key Characteristic: Reasoning and acting are tightly
coupled in a dynamic loop.

» Primary Advantage: This method is highly adaptive and can
handle unexpected outcomes and change its plan on the fly.

27/44



A Framework for Action: ReAct

Why not build a system that explicitly
combines reasoning and acting?

The ReAct framework formalizes this second, more flexible
philosophy. The name itself reveals the core mechanic of this

powerful paradigm:

Reason + Act

> It's a general method for getting LLMs to solve complex
tasks by interleaving internal reasoning (verbal thoughts)
with external actions (tool use).

» This creates a dynamic and reliable problem-solving loop:
Thought — Action — Observation

28/44



ReAct in One Slide

29/44



Beyond the Loop: Key Implementation Challenges

What makes building a reliable ReAct agent so
difficult in practice?

Simply creating the loop is not enough. Several critical
components determine whether the agent succeeds or fails.

Key design considerations include:

1. Prompt Craftsmanship: How do you instruct the LLM to
think and act effectively?

2. Robust Output Parsing: How do you reliably interpret the
LLM's output?

3. Error Handling: How can the LLM recover when a tool fails?

4. Context & Memory Management: How does the LLM
handle long tasks?

30/44



Challenge 1: Prompt Craftsmanship

How do you teach an LLM the rules of the game?

The main system prompt is often the most critical part of a
ReAct agent. It acts as an “operating system” that defines the
agent’s persona, its available tools, and the format for its
reasoning process.

Key Components of a ReAct Prompt:
» Persona: "You are a helpful research assistant..."

» Tool Definitions: A list of available tools and their
descriptions.

» Formatting Instructions (The Contract): A strict
specification for how to format Thoughts and Actions.

» Example: Your response must be a JSON with "thought" and
"action" keys. The action must be TOOL_NAME[ARGUMENT].

31/44



Challenge 2: Robust Output Parsing

What happens when the LLM doesn'’t follow
instructions perfectly?

The LLM's output is just a string of text. Your code must reliably
parse this string to extract a valid tool name and its arguments,
even when the output is malformed.

32/44



Challenge 2: Robust Output Parsing

What happens when the LLM doesn'’t follow
instructions perfectly?

The LLM's output is just a string of text. Your code must reliably
parse this string to extract a valid tool name and its arguments,
even when the output is malformed.

Common Failure Modes to Handle:
» Invalid Format: The LLM fails to generate valid JSON or the
correct TOOL_NAME[ARGUMENT]' structure.

» Hallucinated Tools: The LLM calls a tool that doesn’t exist
(e.g., ‘google_scholar_search[...]").

» Incorrect Arguments: The LLM provides an argument with
the wrong data type (e.g., a string instead of a number).

A robust parser should catch these errors and feed them back to
the LLM.

33/44



Challenge 3: Error Handling & Self-Correction

The Question: How does an agent learn from its mistakes?

34/44



Challenge 3: Error Handling & Self-Correction

How does an agent learn from its mistakes?

The Error Feedback Loop in Action:
1. Action: LLM calls a tool, e.g., ‘run_code [print (x/0)]"

2. Execution Fails: The code interpreter throws a
‘ZeroDivisionError".

3. Observation: This error message is passed back to the LLM
as the observation.
Observation: ZeroDivisionError: division by
Zero.

4. Next Thought: The LLM sees the error and can now reason
about it.

35/44



Challenge 4: Context & Memory Management

How can an agent remember the beginning of a
long task?

The ‘Thought-Action-Observation‘ history grows with every
turn, and it will become really long for complex tasks.

36/44



Challenge 4: Context & Memory Management

How can an agent remember the beginning of a
long task?

The ‘Thought-Action-Observation‘ history grows with every
turn, and it will become really long for complex tasks.

Common Strategies for Memory:

» Windowed History: Only keep the last ‘k‘ turns in the
context. (Simple, but can forget important early
information).

» Summarization: Use another LLM call to periodically
summarize the history so far. (More effective, but adds
latency and cost).

» Vector-Based Retrieval: Store each step in a vector
database and retrieve the most relevant past steps for the
current context. (Most complex, but very powerful).
37/44



ReAct: Putting It All Together

In Summary:

» The ‘Thought-Action-Observation’ loop is the core engine
that allows an LLM to reason, act, and adapt to new
information.

» A reliable agent, however, requires a full support system
around this loop, including:

> A well-crafted prompt to define the rules.
» A robust parser to interpret the LLM’s output.
» A strategy for error handling and memory management.

Now, let’s see how these concepts map to a practical example.

38/44



A Vision: The Al Research Assistant

We can envision an agent participating in the entire scientific
process, tackling tasks of increasing complexity, creativity, and
real-world understanding.

A Spectrum of Agentic Scientific Workflows:

— Literature Synthesis (Today's Capability)
Finding, summarizing, and connecting existing knowledge.

— Hypothesis Generation (Emerging Capability)
Identifying gaps and proposing novel, testable ideas.

— Experimental Design (The Frontier)

Designing valid experiments, from power calculations to lab
protocols.

39/44



Workflow 1: Automated Literature Synthesis

This workflow is a multi-step information retrieval and synthesis
problem, which maps directly to the capabilities of a tool-using
LLM. It’s the scientific application of the patterns we've already
discussed.

The Agent’s Process:
1. Use a ‘pubmed_search’ tool to find relevant papers.
2. Use a ‘read_pdf* tool to extract the text from each one.
3. Use internal reasoning (generation) to summarize each
paper.
4. Use internal reasoning again to synthesize a final report
connecting the claims from all sources.

40/44



Workflow 2: Hypothesis Generation

Hypothesis generation requires the agent to go beyond
retrieving known facts and start inferring unseen connections.
This is a leap from information retrieval to knowledge creation.

Key Challenges for the Agent:

41/44



Workflow 2: Hypothesis Generation

Hypothesis generation requires the agent to go beyond
retrieving known facts and start inferring unseen connections.
This is a leap from information retrieval to knowledge creation.

Key Challenges for the Agent:

» Identifying Gaps: It must first build a knowledge map from
the literature and then identify what is *missing*.

» Creative Inference: It needs to propose novel links between
disparate concepts (e.g., connecting a biological pathway
from one paper to a disease mechanism in another).

» Requires New Tools: The agent might need tools to
traverse knowledge graphs (e.g., gene-protein interaction
networks) to find plausible connections.

42/44



The Frontier: Automated Experimental Design

Designing a valid experiment is the bridge from the digital world
of information to the physical world of action. This requires a
much deeper level of understanding.

This Task Requires the Agent to Understand:

» Causality: The difference between correlation and
causation, and how to design controls to isolate variables.

» Resource Constraints: The real-world limitations of budget,
time, and equipment.

» Physical Procedures: Writing a step-by-step lab protocol
that a human (or a robot) can actually execute.

43/44



The Engine Powering the Vision

At its core, every workflow we've discussed is powered by this
fundamental ReAct loop. The complexity lies in the tools
provided and the sophistication of the LLM'’s reasoning.

def run_agent(query, tools):
template = ", nun
scratchpad, history = "", []

while not done():
prompt = template.format(...)
response = 1lm.generate (prompt)
thought, action = parse(response)
scratchpad += f"Thought: {thought}\n"
obs = execute(action, tools)
scratchpad += f"Observation: {obs}\n"

return final_answer

What tools and reasoning capabilities would this
loop need for true hypothesis generation?

44/44



	Part 1: The Anatomy of an AI Agent
	What Agents Can Do That LLMs Cannot
	Grounding LLMs with RAG
	The RAG Research Frontier
	From Predictor to Calculator: The Evolution of LLM Math
	A Framework for Orchestrating Tools

