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What Makes Data Multimodal?

Definition:
@ Information from multiple modalities (text, images, audio, etc.)
@ Each modality provides different types of information

@ Combined analysis often more powerful than single modality

Think About How You Process Information: MR/ blsodl

Emnwlw
e Reading a paper: You see text and interpret figures T
s

@ Doctor's diagnosis: FWH) and X-ray image

@ Drug discovery: Molecular structure (graph) and effect descriptions

The Key Insight:
Each modality tells part of the story. Together, they tell the complete story.
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Biomedical Multimodal Examples

Voanank Geat's

Rich Multimodal Landscape: poeent A TDC"
ext + Images:)Research papers with figures and chaTt F\.wg.,' .
Molecular 4+ Text: Chemical structures with property descriptions Ciske
Genomics + Phenotype: DNA sequences with trait descriptions Scehe
Medical Images + Reports: Scans with radiological findings

Audio + Text: Voice biomarkers with clinical notes
Audio T Text. |

Why Multimodal Matters in Health:

e Redundancy: Cross-validate findings across modalities

@ Completeness: Capture phenomena invisible to single modality
@ Robustness: Handle missing or corrupted data
°

Human-like: Matches how clinicians make decisions



The Multimodal Challenge: Why It's Hard

The Representation Gap:
@ Images: High-dimensional pixel arrays, spatial patterns
@ Text: Sequential tokens, semantic relationships
@ Molecules: Graph structures, chemical bonds

o Audio: Time-frequency representations, temporal patterns

Fundamental Questions:
@ How do we represent such different data types? ( fmes@.)
\&/ How do we find connections between modalities? CW“’& ’[o‘.e)
\Lo When should we combine vs. analyze seng{tg&y? (

a
@ How do we handle missing modalitjes? Gueer

V)‘Lm&
o o v sapmme HEEY 12y (21 (1)
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How Do We Represent Images? From Pixels to CNNs
" Erlueddings” (303~

Start simple, then add structure:
o Raw pixelsd vectorizeg D flatten an H x W x C image into REWC,
e Pros: simplest numeric representation. A
e Cons: destroys spatial locality; no translation/scale invariance.; %‘\M
—’_\—V !

@ Patches / local descriptors: split into fixed-size patches (e.g., 1é%>< 16),
summarize each patch.

(U KLY

o Keeps some locality; can pool/aggregate over patches.

e Convolutions (CNNs): learn local filters with weight sharing to
produce feature maps.
e Hierarchy: edges — textures — parts — objects
e Pooling provides translation tolerance; preserves spatial structure.

Key idea: respect i omefry (locati @ﬁ arity) instead of
treating pixels as ar unordered vectdr.

P Qipdl
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Convolutional Neural Networks (CNNs)

Key idea: learn spatially-local filters shared across the image.

@ A convolution applies a kernel K € R¥** across the input:

kK k

(F+K)(i,j) => Y K(u,v)F(i+u,j+v)

u=1v=1
@ Weight sharing: the same K is used everywhere — translation
equivariance.

@ Stacking layers builds a hierarchy of features:

e Shallow: edges, corners, textures
o Deeper: object parts, semantics

@ Pooling layers reduce resolution, increase invariance.

Popular CNN backbones: AlexNet, VGG, ResNet (skip connections),

EfficientNet (scaling). V \‘t,_us'»‘k M svw\\ﬁﬁ‘ﬂ
i e & Gt



CNN Visualization
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Vision Transformers (ViT)

Key idea: treat an image as a sequence of patches — use a Transformer
encoder.

e Split image into N patches {z1,...,zn}, flatten each to a vector.
@ Project each patch with a linear map E:

zi=F -z;+p;, t1=1,...,N

where p; is a positional embedding.

@ Add a special [CLS] token zp; the Transformer encoder produces
contextualized representations:

7' = TransformerEncoder([29, 21, - - - , 2n])

@ Use the output of zy as a global image embedding.

Properties: scales well with data, captures long-range dependencies, now
competitive or better than CNNs on many tasks.



ViT Visualization
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From Representation to Alignment
A Fish Katis  (Tmgt) Teal) 2
i%j 3 swimming WA). Twae 2, Texe)?
~
~

TQX‘E oy
So far: 4t Dmiggdt Texe 1

. « Toaty 1, e, T)
@ We learned how to build strong image embeddings (CNNs, ViTs).

@ We also know how to build text embeddings (LLMs, v(;'/gﬁﬁcl' Tw‘d’)
embeddings).
Y TE30F  Buy +f wod

Next question: How do we bring two modalities into the same space?
@ Need a way to compare image and text representations.

° Relquires a shared latent space for cross-modal understanding.
() . .
This motivates contrastive learning for multimodal alignment. \
We ateh A Wiy v measae “Stmladty’! heiween dfexe &i/mxf Peprswistis

“ 9fv\‘tlav§h‘:) (Tmaae, (F0)
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Mathematical Foundation: Similarity Metrics

Core Question: How do we measure similarity between different
modalities?  \\duluies = Vecor Enledlng =5 6&‘*;"29 for aligmant!
Cosine Similarity (Most Common):

sim(u,v) = vy Dz Uil

[ullv] \/Z?:l “12\/2?:1 v;

Toy Example:
e Image embedding: u = [0.8,0.6,0.0]
e Text embedding: v = [0.6,0.8,0.0]

e cimilarity- 0.8%0.640.6x0.840.0x0.0 _ 096 _
@ Cosine similarity: 087 10.673:0.07 /0 6210 874007 — TOx10 — 0.96

Why Cosine? o ‘
O -\ whee simlaity T as do s
@ s ingue maaui(wie. uﬂv\uﬂic & sm(2n, W) = Swluw) 1



Learning from Paired Data

Patient. patholeay ste, EAR Data, Ww,

Key intuition: If you show a model images and their captions together, it
can learn to connect visual and textual concepts.

pcereing | [ IS 08 oS 51\“{(4"‘43 f
, @ Positive pair: (dog image, matching

T [ [om | - [ caption) should be close in
IR embedding space.

@4 Lo il S o Negative pairs: (dog image, caption
about a car) should be far apart.

\L asing Shalavty Y/
“A brown dog running in the grass”

Big picture: The mod i images and text into a shared semantic
space by performing(‘classification”. 1 coveck [MMAJ

CIMM)Q v CaPJ-iun :)) = T
O Manedt paing 1



Contrastive Learning: The Core Idea

Vegy: Fish = °PH\”'—RA G2 cbser -2 A C(‘lsszﬁMhA loss
W9, Cih lanrrs, hows = <,7 1 in disguise !
Goal: Bring matched pairs close, push mismatched pairs apart.
@ Given a batch of image—text pairs {(Il,Tl)}lf\L1 (11, T) Cowect
- (L, ) X

1 exp((f(£i),9(T3))/7)
Lecontrastive = Z [ eXp ((f(L z)’g(TJ)L/T)]

here: (;’\:CL ‘F(i ) 3(—[ > E Text embeddisy

e f(I) = image encoder ( CNN/VlT e,.luMa) OF dog 4. .

o g(T) = text encoder (Transformer/LLM%n" doy |

° temperature parameter controlling sharpness of similarity: lower 7
= more peaky distributions (hard negatives matter more).

Encourages alignment between true pairs and separation otherwise.

<AL 9T b ke high T <= how "Plcks whie”
A o5 & neg at.

<§CT), ICTHY brj#i ke (ow. 13



From Alignment to Fusion: General Recipe

Alignmentva\{qoan;}(s whenever we have encoders f and g:

A i 4o e (eﬁ@ YR E)ﬁ)‘in@d 0 fir £ asd 9
W - K:ohk fmfr , A(' Ament
:) yry 3
Ll - U@
Fawn e 1@

por efficient Ao learn

Examples: M74=" @ Focus o aligment.,
e Image <> Text (CLIP) (4 -=512) also dan- effivnt
@ Audio +» Text (speech + transcripts) V““‘*“{’::Ef‘"
@ Molecule <+ Text (chemistry + descriptions) @ limn Cxpression

Use cases: zero-shot classification, retrieval, embedding search.

When alignment isn’t enough: We need fusion (cross-attention, hybrid
models) for fine-grained grounding and reasoning — more coming.
Q@ Tain £&9 ad digwnt: Fagion
14



Using CLIP: Zero-Shot with Prompts

Zero-shot via prompt templates:
o Build text prompts like: "a photo of a {label}", "an X-ray showing
{condition}", "a histology slide of {tissue}."

e Prompt ensembling: average embeddings over multiple templates;

-y tabilit k: T ﬁv& |0/000 }mu T,W’M*‘fﬂ’ﬁno( an
[ improves stabili y. las WjGiWA ! el m/\ o

“5) Tk f\a e ebal - s
Pt
},[ ! e Fd M wage whose embolding
15 mesk Siwlar fo My Hext
Ml‘uu:qj 9
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( 1 New Tmage = Lok &

. Kt ost Similar cagtion, 5



Using CLIP: Linear Probe (Few-Shot)

Linear probe:
@ Freeze image encoder; extract embeddings

e Fit a light classifier (logistic regression, tree models) on a small
labeled set

@ Strong baseline, avoids full fine-tuning cost

'—Q’lqu'
Laist —naturg
— lgisnc '
— emwmgs — u Regessin ;
m _ 4

acp

Ufrer
m\rﬁnmlllft :

CER
o)
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Domain Adaptation: From CLIP to BiomedCLIP

oalogas o BERT 2 LLMEDBERT  Gooe A BR{CKIL in BRT
> 1 blea 0 bMED
Challenge: Web captions # biomedical language/images.
@ BiomedCLIP: pretrain on biomedical image—text pairs (PMC, etc.).

e Adapters/LoRA: parameter-efficient fine-tuning on\limited domain

data. fusiwé extuck all
m A s

Practical knobs: W quldishad papess ¢

@ Freeze vision encoder; fine-tune text prompts (prompt tuning) or small
adapters.

e Curriculum prompts: generic — domain-specific (radiology —
finding-level).

Temjzan tue
o Regularize: weight decay, mixup on embedding§, moderate 7>
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Beyond Alignment: Cross-Attention Fusion

Why fuse? Some tasks need fine-grained grounding (token <> patch).

e Cross-attention lets text tokens query image patches (and/or vice
versa).

e Used in BLIP-2/LLaVA/Flamingo-style models for VQA, captioning,
grounding.

Minimal math:

QK]
Attn(Qtexta Kimagea Vimage) = softmax \/g V.,

Text asks; image answers. Great for localization, step-by-step reasoning.

18



Cross-Modal Attention: The Bridge Between Modalities

Standard Self-Attention: @, K, V all from same modality
Cross-Modal Attention: Mix queries and keys from different modalities

Example Configurations:

Q@ Image — Text: @ from text, K,V from image

Attention(Qtexta Kimagea Vimage) (1)

@ Text — Image: @ from image, K,V from text

Attention(Qimage; Ktext, Viext) (2)

Intuition:

@ Text asks questions (@), image provides answers (K, V')
@ "What does this medical image show?" — Relevant image patches

19



Vision—Language Models (VLMs)

arts
Definition: Models that jointly process images and text to produce
shared understanding. g . Gum
image. =5 “texe
@ Inputs: multimodal pairs (image + caption, scan + report, diagram
+ text)
o Architecture: often two encoders (vision, text) withlayers
(cross-attention) CE )

o Outputs: can be text (caption, answer), labels (classification), or

embeddings (retrieval)

20



Visual Question Answering (VQA)

Task: Answer a natural language question about an image.

e Input: (Image, Question) e.g., Chest X-ra + "What abnormality is
visible?" Answers mi"lm(ﬂ«g' “(uny cancol %

@ Model: process image patches + text tokens; combine with
cross-attention

) Tnfer Hu
e Output: Answer text or categorical label leed ‘C )ﬁj(?
1/51~451/

Why it matters:
@ Brings interaction: models respond to specific queries

o Biomedical use: “Where is the tumor?”, “What stage is this?”, “Has
pneumonia improved?” Geng ll(. Benchmadk
\4\ I NN q

@ VQA = the canonical benchmark for multlmodal reasonlng

Can WM Ule GIT-¢ Count N
o ' . 9

@ \(vv(v}@ /\"V"fvm’“ﬂ‘;‘ﬁs ¥ LD e iing?
o 5) (3) objests thae de - | 21




Representative VLMs

( Open-weigk: Poushlosd h aual midih & Veploy it y2egelf )

General-domain: ; Given animese =) Ganearies its Laphivn
e BLIP / BLIP—Z:/pretrain on image—text pairs, instruction-tune for
captioning & QA
e Flamingo: frozen LLM + cross-attention adapters
@ LLaVA: connect CLIP vision encoder to LLaMA (open-weight LLM
from meta) for multimodal dialogue
Biomedical adaptationé: 7 T #he sessed ek on g Hromedical Dotasef
e MedVQA: chest X-ray VQA datasets (e.g., VQA-RAD)
e PMC-VQA: millions of figure—caption QA pairs from PubMed Central
@ BiolLLaVA: LLaVA variants tuned on biomedical images + text

22



Three Key Fusion Strategies

Early Fusion (Feature Level; what we just covered):
@ Combine raw features from different modalities
@ Pro: Rich interaction between modalities
e Con: High dimensionality, potential for overfitting

Late Fusion (Decision Level):
@ Process each modality separately, combine final outputs
@ Pro: Modular, interpretable, handles missing data

@ Con: Limited cross-modal interaction

Hybrid Fusion (Intermediate):
e Combine at multiple stages of processing
@ Pro: Balance between interaction and modularity
@ Con: More complex architecture and training

23



VLM Tasks:/Retrieval

% ‘)
Retrieval (Image « Text) Texe = Tuyuy Y find Ja Kight L“‘j"

e Task: Given a query (e.g., “Which image shows a doctor examining an
X-ray?"), retrieve the correct image or caption.

o Key Metrics: [o0 Texde Quespins =) 85"?#"} 7p
e Recall@K: Fraction of queries where the correct matchlgpf)g'éf'r;m the
top-K results. ] lWM ondin
e
Facnl(e'i Recall@K — #{queries with correct in top—K}M: e“;ib
9l o #{queries} answey
\ <=
(o VExample: Recall@10 = 0.85 means 85% of queries had the correct
e__| answer within the first 10 retrieved results.

ﬁ‘ e Mean Reciprocal RankAverage of reciprocal ranks of the
first relevant item. Rewards higher ranking of the correct match.

- LA small Ranks 7:J;J’
-2 & J
[ MRR = 5 ; rank; | highes tewmds s

o Other: Precision@K, nDCG (normalized discounted cumulative gain)
for graded relevance. 24



VLM Tasks: Captioning

Captioning (cluds sowe Geneunhve -
. glassification L
e Task: Given an image,generatéa natural language description (e.g.,

“A nurse holding a newborn baby in the delivery room.”) ‘
@ Most Common Metric:i BLEU | / Human Caluapion RIHT ((Kaaletq )

o Measures n-gram precision between generated caption and references.
e Formula (BLEU-N):

N
BLEU = BP - exp (Z wh, logpn>

n=1
where:
@ p, = modified n-gram precision
e w, = weight (often uniform, 1/N)

1 ife>r
e BP = is the brevity penalty, with ¢ = candidate
=) i<y y P Y

length, r = reference length

o Other metrics: CIDEr (consensus-based), SPICE (semantic graph).
25



VLM Tasks: Visual Question Answering (VQA)

Visual Question Answering

@ Task: Answer natural language questions about an image. Example:
“What color is the traffic light?” — A: “Green”

o /Key Metrics:
° A\ccuracy: Proportion of questions answered correctly.
v
correct answers
Accuracy _ W )
. F+{total questions}
A evmnod\e s GLQM (‘S N the "KJIC ansvex’
° Match M): 1 if predicted strlng exactly matches reference, 0
otherwise.

e F1 score: Harmonic mean of precision and recall at the token level.

F1_9 Precision - Recall

c " Precision + Recall
K bveen
B (he lget & Green

C’VGKM \lﬂht 2%



VLM Tasks: Reasoning Benchmarks

= VWA is mach less el
Hea ( .]WL

@ Task: Answer complex questions requiring reasonmg or external
knowledge. Examples:

o OK-VQA: "Which company manufactures the phone in the image?”

“Which planet is shown in the diagram?”

o MathVista: “What is the angle at point A in the figure?”
@ Metrics:
o Exact Match / F1 (string-level correctness).

Multimodal Reasoni

o Chain-of-thought consistency: fraction of steps logically valid.
e Human evaluation: correctness and faithfulness of reasoning traces.

g o
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VLM Tasks: Multimodal Classification

Classification
@ Task: Predict categorical label from fused modalities. Example: Input
= meme image + caption. Output = “Hateful” or “Not hateful.”
o Key Metrics:
e Accuracy: fraction of correct predictions.
e Macro-F1: average F1 across all classes, treating them equally.

1 &
Macro-F1 = ° ; F1.

e AUROC: area under ROC curve; probability that positive is ranked
above negative.

28



VLM Tasks: Structured Perception

Structured Perception (Detection & Segmentation)
@ Task: Parse structured elements from multimodal inputs. Example:
Given a scanned document, identify table regions and read cell values.
o Key Metrics:
e Mean Average Precision (mAP) for detection:

C

1
1
/0 p(r)dr and m c E A

where p(r) = precision as a function of recall.
e Mean Intersection over Union (mloU) for segmentation:

N
_|PNG]| 1 _
loU = PUG mloU = N ;:1 loU;

where P = predicted region, G = ground truth.
29



Popular Pretrained Multimodal Models

@ CLIP / Open-CLIP: Contrastive alignment of image/text embeddings —
strong retrieval and zero-shot classification.

@ BLIP / BLIP-2: Generative pretraining (captioning) + adaptation to VQA
and reasoning tasks.

@ Flamingo (DeepMind): Few-shot multimodal QA by adding
cross-attention layers to frozen LLMs.

@ LLaVA, GPT-4V: Visual encoder + LLM backbone; strong reasoning and
general-purpose QA.
Key multimodal pretraining strategies:
@ Contrastive (aligning vision/text in shared space)
@ Generative (predicting captions or answers)

@ Instruction tuning (aligning multimodal input with human queries)

30



Adapting Pretrained Models to Tasks

Zero-Shot / Prompting
@ CLIP: zero-shot classification with natural prompts

@ GPT-4V: direct domain-specific reasoning (e.g., chart analysis)

Lightweight Finetuning
@ LoRA / Adapters: update small parameter subsets (W ~ W, + AB")

@ Instruction-tuning with limited task-specific data

Task-Specific Heads
@ Detection: bounding box regression head

@ VQA: cross-attention head into LLM decoder

LLM vs VLM Finetuning
@ LLM finetuning: focuses on text-only alignment (e.g., domain language
adaptation).
@ VLM finetuning: requires jointly adapting vision + language modules (e.g.,
aligning image features to textual concepts). 31



Applications of VLMs

@ Healthcare: Radiology reports, pathology slides, multimodal risk prediction
(Metrics: AUROC, sensitivity/specificity)

@ Science & Education: Diagram QA, chart interpretation, multimodal
tutoring (Metrics: Exact Match, F1, reasoning consistency)

@ Web & Industry: Content moderation, e-commerce retrieval, multimodal
search (Metrics: F1, Recall@K, CTR = clicks / impressions)

32



What is a potential application in your research area?

33



