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What are Large Language Models?

Definition:
Neural networks trained on massive text corpora
Transformer architecture with billions of parameters
Learn patterns in language through self-supervised learning
Can generate human-like text and perform various language tasks

Key Capabilities:
Text generation: Create coherent, contextual text
Question answering: Respond to complex queries
Summarization: Distill key information from documents
Translation: Convert between languages and domains
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The Scale Revolution

Model Size Evolution:
BERT (2018): 110M – 340M parameters
GPT-2 (2019): 1.5B parameters
GPT-3 (2020): 175B parameters
PaLM (2022): 540B parameters
GPT-4 (2023): Estimated 1+ trillion parameters

Emergent Abilities:
Few-shot learning: Learn new tasks from examples
Chain-of-thought reasoning: Step-by-step problem solving
In-context learning: Adapt behavior within a conversation
Task generalization: Apply knowledge across domains
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Recap: From Sequence Modeling to Self-Supervision

Traditional Sequence Modeling:
Traditional word representations are very corpus-limited
Limited context window and parallel processing (e.g., RNNs, LSTMs)

The Transformer Revolution (2017):
“Attention is All You Need”: Self-attention mechanism
Parallel processing: All positions processed simultaneously
Scalability: E!cient training on large datasets
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Self-Supervised Learning: The Foundation

What is Self-Supervised Learning?
Learn from unlabeled data by creating labels from the data itself
No human annotation required
Massive scale: unlabeled means we could train on much larger text
corpora

Two Main Approaches:
Masked Language Modeling (BERT-style): “The [MASK] sat on the
mat”
Causal Language Modeling (GPT-style): “The cat sat on the ___”
→ predict next token
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Masked Language Model Pretraining

Setup: Given a tokenized sentence x = (x1, . . . , xT ), randomly choose a
set of masked positions M.

For i ↑ M: replace with [MASK] token (80%), random token (10%),
or keep unchanged (10%).
Only masked positions contribute to the loss.

Loss:
LMLM = ↓

∑

i→M
log pω

(
xi

∣∣x\M
)
.

Interpretation: Predict the original words at the masked positions, given
the rest of the sentence.
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Masked Language Model Pretraining

Setup: Given a tokenized sentence x = (x1, . . . , xT ), randomly choose a
set of masked positions M.

For i ↑ M: replace with [MASK] token (80%), random token (10%),
or keep unchanged (10%).
Only masked positions contribute to the loss.

Loss:
LMLM = ↓

∑

i→M
log pω

(
xi

∣∣x\M
)
.

Interpretation: Predict the original words at the masked positions, given
the rest of the sentence.
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Masked Language Model Pretraining

Toy Example: single mask
Input sequence:

the cat sat on the [MASK]

Gold token:

mat

Model predictions (top-5):
mat: 0.70
floor: 0.15
chair: 0.10
sofa: 0.03
ground: 0.02

Loss contribution:
↓ log 0.70 ↔ 0.357
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Masked Language Model Pretraining

How cross-entropy loss works:
We always look at the probability assigned to the true token.
If p(gold) is high ↗ loss is small.
If p(gold) is low ↗ loss is large.
Correct predictions still contribute non-zero loss unless p(gold) = 1.

Example:
ω = ↓ log p(“mat”)

Model prob. Loss
p = 0.85 ↓ log 0.85 ↔ 0.16 (small)
p = 0.70 ↓ log 0.70 ↔ 0.36
p = 0.05 ↓ log 0.05 ↔ 2.99 (large)

Key point: Training nudges the model to shift more probability mass to
the correct token.
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Masked Language Model Pretraining

General-domain pretraining (BERT, RoBERTa, etc.):
Wikipedia + BookCorpus (original BERT)
Common Crawl (CC-News, OpenWebText, RoBERTa)
Large web-scale datasets (C4 for T5, The Pile, etc.)

Domain-specific adaptations:
BioBERT: continues BERT pretraining on PubMed abstracts and
PMC full-text articles.
SciBERT: trained from scratch on scientific papers (Semantic Scholar
corpus).
ClinicalBERT: fine-tuned on clinical notes (MIMIC-III EHR dataset).
FinBERT: financial text (analyst reports, SEC filings, news).

Key idea: Take a general BERT model and further pretrain

(domain-adaptive pretraining) or train from scratch on domain corpora →
embeddings become specialized to that field’s vocabulary and style.
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Masked Language Model Pretraining (Drawing)
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Causal (Autoregressive) Language Modeling

Idea: Predict the next token given all previous ones.
Unlike BERT (masked LM), no bidirectional context.
At position t, model only sees x<t = (x1, . . . , xt↑1).

Objective:

LCLM = ↓
T∑

t=1

log pω(xt | x<t)

Interpretation: Train the model to generate text one token at a time.
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Causal (Autoregressive) Language Modeling

Idea: Predict the next token given all previous ones.
Unlike BERT (masked LM), no bidirectional context.
At position t, model only sees x<t = (x1, . . . , xt↑1).

Objective:

LCLM = ↓
T∑

t=1

log pω(xt | x<t)

Interpretation: Train the model to generate text one token at a time.
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Causal Language Modeling

Cross-entropy loss at each step:

ωt = ↓ log pω(xt | x<t)

Compares the model’s predicted distribution with the true token.
Model assigns a high probability to the correct token → small loss.
Low probability on correct token → large loss.

Example: Input prefix = “the cat sat on the”

Gold next token mat

Model p(mat) 0.75
Loss contribution ↓ log 0.75 ↔ 0.29
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Causal Language Modeling

Toy example — step by step generation
Prefix: “the cat”

Step 1: predict next token
p(sat) = 0.6, p(runs) = 0.2, p(eats) = 0.2
Choose sat

Step 2: prefix is now “the cat sat”

Predicts next token p(on) = 0.7, p(under) = 0.2, . . .
Choose on

Generated sequence: the cat sat on __
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Causal Language Modeling

General-domain pretraining corpora:
GPT-2/3: WebText (scraped from outbound Reddit links).
GPT-4/5 style: massive curated web + books + code + academic
papers.
The Pile, C4, Common Crawl.

Domain-specialized variants:
Code models (Codex, CodeGen, StarCoder) → source code corpora.
BioGPT → biomedical papers (PubMed).
LegalGPT, FinGPT → legal and financial corpora.

Key point: Same objective, but data domain defines specialization.
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Causal Language Modeling (Drawing)
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Causal LM Training Loss Across Sentences

How is the loss aggregated?
GPT treats training text as one long token stream (after tokenization).
Breakpoints are inserted at document boundaries (e.g., end-of-text
tokens).
Within each segment (context window), the loss is computed at every
step:

L = ↓
T∑

t=1

log pω(xt | x<t)

Loss is summed (or averaged) across all tokens in the batch.
No “next sentence prediction” like BERT — continuity is handled by
concatenation.

Key Point: GPT learns to model long sequences of text seamlessly, not
sentence-by-sentence.
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MLM vs. CLM — Which for Which?

Masked LM (BERT-style):
Strength: bidirectional context → strong encoder representations.
Limitation: not directly generative (needs extra heads).
Best for: classification, retrieval, embeddings, understanding tasks
(e.g., sentiment analysis, named entity recognition, QA retrieval).

Causal LM (GPT-style):
Strength: autoregressive generation → fluent text continuation.
Best for: text generation, dialogue, summarization, code completion.
Limitation: no direct bidirectional encoding (left-to-right only).

Summary:
BERT/MLM = “read and understand.”
GPT/CLM = “predict and generate.”
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MLM vs. CLM — Which for Which?

Masked LM (BERT-style):
Strength: bidirectional context → strong encoder representations.
Limitation: not directly generative (needs extra heads).
Best for: classification, retrieval, embeddings, understanding tasks
(e.g., sentiment analysis, named entity recognition, QA retrieval).

Causal LM (GPT-style):
Strength: autoregressive generation → fluent text continuation.
Best for: text generation, dialogue, summarization, code completion.
Limitation: no direct bidirectional encoding (left-to-right only).

Summary:
BERT/MLM = “read and understand.”
GPT/CLM = “predict and generate.”
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The Attention Idea

Core motivation: When reading, we don’t treat every word equally. Some
words are more relevant than others for understanding the current word.

Toy example: Sentence: “The cat sat on the mat.”
To interpret “sat,” we care most about “cat” (subject) and “mat”
(object).
Attention is a mechanism to learn these relevance weights

automatically.
Each token builds its new representation by looking at others,
weighted by importance.

Key idea: Attention lets every token see (and borrow information from) all
other tokens.
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Recap: Token Embeddings

From words to vectors:
Words/tokens are mapped to fixed-length vectors (e.g. 300-d in
Word2Vec, 768-d in BERT).
Embeddings capture meaning: similar words → nearby vectors.
In Transformers, we start with a learned embedding lookup table.

Toy example (2D illustration):

Token Embedding (2D toy)
“cat” (0.9, 0.8)
“dog” (0.8, 0.7)
“mat” (0.1, 0.9)
“sat” (0.5, 0.3)

Key point: These initial embeddings are the “raw ingredients.” Attention
will transform them into contextual embeddings that depend on
surrounding words.
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Introducing Q, K, V

How can we compute “relevance” between tokens? We project each
token embedding into three spaces:

Query (Q): What am I looking for? (e.g., “sat” asking for
subject/object)
Key (K): What do I contain? (e.g., “cat” contains subject info)
Value (V): What information can I provide if I am selected?

Toy analogy:
“sat” sends out a query vector.
It matches strongly with the key of “cat,” somewhat with “mat,”
weakly with others.
Weighted sum of corresponding values = enriched representation of
“sat.”

Result: Each word representation becomes context-aware.
23
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Introducing Q, K, V

The formula:

Attention(Q,K, V ) = softmax

(
QK↓
↘
dk

)
V

What it means:
1 Compute similarity: QK↓ (dot products between queries and keys).
2 Scale by

↘
dk to control variance (dk is the number of rows of K).

3 Apply softmax to get attention weights (probabilities).
4 Multiply weights with V to get a weighted combination of values.

Intuition: Each token asks (Q) “Who is relevant?” and collects info (V)
from others according to the match (K).

24



From Formula to PyTorch

The formula again:

Attention(Q,K, V ) = softmax

(
QK→
↔
dk

)
V

Implementation in PyTorch:
import torch

import torch.nn.functional as F

def scaled_dot_product_attention(Q, K, V):

d_k = Q.size(-1) # embedding dimension

# 1. Similarity scores

scores = torch.matmul(Q, K.transpose(-2, -1))

# 2. Scale

scores = scores / torch.sqrt(torch.tensor(d_k, dtype=torch.float32))

# 3. Softmax normalization

weights = F.softmax(scores, dim=-1)

# 4. Weighted sum of values

output = torch.matmul(weights, V)

return output, weights

Note: This is the core step inside every Transformer attention head.
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Toy Example: Q, K, V

Sentence: “The cat sat” (focus on “sat”)

Step 1. Embeddings (toy 2D)
Token Embedding
cat (1, 0)
sat (0, 1)

Step 2. Linear projections → Q, K, V
Query (“sat”) = (0.2, 0.8)
Key (“cat”) = (0.9, 0.1), Value = (1.0, 0.0)
Key (“sat”) = (0.3, 0.7), Value = (0.0, 1.0)

Step 3. Compute attention scores (dot products)

score(sat→cat) = 0.2 · 0.9 + 0.8 · 0.1 = 0.26

score(sat→sat) = 0.2 · 0.3 + 0.8 · 0.7 = 0.62
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Toy Example: Q, K, V

Step 4. Normalize with softmax

ε = softmax([0.26, 0.62]) = [0.41, 0.59]

Step 5. Weighted sum of values (contextual embedding)

Output(sat) = 0.41 · (1, 0) + 0.59 · (0, 1) = (0.41, 0.59)

Interpretation:
“sat” looks partly to itself, partly to “cat”.
The new embedding mixes subject + self-information.
Attention lets “sat” carry forward contextualized meaning.
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Attention in Causal Language Modeling

Recap: Attention output for each token

ht = Attention(Qt,K↗t, V↗t)

For position t, we only attend to tokens x↗t (causal mask).
The contextual vector ht is passed through feed-forward layers.
Finally, ht is projected onto the vocabulary to predict xt+1.

Same loss function (Causal LM):

LCLM = ↓
T∑

t=1

log pω(xt | x<t)
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What is a Multi-Head Attention Head?

So far: One set of Q,K, V projections = one “attention head.”

Multi-Head setup:
Use H di"erent sets of projection matrices.
Each head attends in a di"erent “representation subspace.”
Outputs from all heads are concatenated for next steps.

MHA(Q,K, V ) = [head1; . . . ; headH ]WO

Example intuition:
Head 1: pronoun resolution (“it” → “animal”)
Head 2: subject–verb link (“cat” ≃ “sat”)
Head 3: object link (“sat” → “mat”)

Takeaway: Multiple heads let the model capture di"erent types of
relations in parallel.
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Common Hyperparameters

Key design knobs in a Transformer:
Embedding dimension (dmodel) Size of token vectors (128 → 4096).
Larger = richer representation, but quadratic cost in GPU memory.

Number of heads (H) Splits dmodel into parallel subspaces. Typical:
4–16. More heads = more perspectives, but each adds compute.

Layers (N) Depth of stacked Transformer blocks. Deeper = stronger

modeling, but training is slower.

Feed-forward size (d!) Inner hidden dimension (often 2–4× dmodel).
Controls non-linear capacity; memory-intensive.

Context length (sequence length) Max tokens per batch (e.g. 512,
2k, 8k+). Attention cost grows as O(L2

) with sequence length.

Rule of thumb: Each choice trades o" accuracy vs GPU cost.

30



Practical Sizes and GPU Cost

How big do models need to be?
Small (classroom / toy) dmodel=128, H=4, N=2-4, context=128.
Fits on laptop CPU or single small GPU. Good for demos.
Medium (research / fine-tuning) dmodel=512–768, H=8-12,
N=6-12, context=512–2k. Needs ⇐1 modern GPU (12–24GB).
BERT-base is here.
Large models dmodel=2k-4k, H=32–64, N=24–48, context=2k–32k.
Needs multiple GPUs (A100/H100, TPU pods). Training cost =
millions of GPU hours.
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Pretraining Recap: What, Why, What’s Learned

Data:
Massive diverse corpora: web pages, books, code, articles, research.
Trillions of tokens—self-supervised learning via language patterns.
Cleaning is essential: removing duplicates, noisy or personally
identifiable data. :contentReference[oaicite:1]index=1

Objective: Causal LM training:

L = ↓
T∑

t=1

log p(xt | x<t)

E.g., "The patient showed symptoms of" → "fever"

What emerges:
Syntax, semantics, world knowledge, reasoning.
Predicting the next token drives internal understanding of language.
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Pretraining in Practice: Challenges, Infrastructure & Cost

Challenges:
Compute: Requires thousands of GPUs for weeks.
Stability: Models can diverge → need LR warmup, clipping,
normalization.
Data: Web text is noisy; filtering & deduplication are critical.

Infrastructure & Cost:
GPT-3 scale: ⇐10k GPUs, cost ⇐tens of millions.
Scaling: Distributed training (data/tensor/pipeline) keeps GPUs busy.
E!ciency: Mixed precision (FP16/BF16, now 4-bit) cuts memory &
boosts speed.

Takeaway: Simple next-token loss, but enormous compute + careful
engineering required.
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So. . . Does This Mean We Can’t Do LLMs with $1M?

Obviously not! Training GPT-4 scale from scratch costs hundreds of
millions, but we don’t need to start from zero.

Solution: Use pretrained models:
Hugging Face hosts thousands of ready-to-use models (BERT,
GPT-2/3 variants, LLaMA, Mistral, Falcon, etc.).
You can adapt them to your domain for a tiny fraction of the cost.

Example: Hugging Face Model Hub

huggingface_models.png

Screenshot from huggingface.co/models
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Not From Scratch: Model APIs & Hosting

What is an API?
API = Application Programming Interface
A standardized way for software to communicate (send a request, get
a response).
For LLMs: you send text input → provider’s server runs the model →
you get back text output.

Why it matters for LLMs:
No need to train or even host large models yourself.
Provider handles GPUs, scaling, and updates.
You focus on your application logic.

Common API providers: OpenAI (GPT-4/4o), Anthropic (Claude),
Hugging Face Inference API.
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How an API Call Works

Steps to use a hosted model:
1 Get an API key from the provider.
2 Install their Python client or use HTTP requests.
3 Send text input → receive model output.

Example (OpenAI, text completion):
from openai import OpenAI

client = OpenAI(api_key="YOUR_KEY")

resp = client.chat.completions.create(

model="gpt-4o-mini",

messages=[{"role":"user",

"content":"Explain photosynthesis in one sentence."}]

)

print(resp.choices[0].message.content)

# -> "Plants make food from sunlight, water, and CO2."

Takeaway: 3–5 lines of code = LLM in your app.
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Zero-Shot Learning

What is it? Model solves tasks without any task-specific training, just by
following instructions.

Example (Hugging Face):
from transformers import pipeline

clf = pipeline("zero-shot-classification",

model="facebook/bart-large-mnli")

text = "This patient shows signs of high fever and cough."

labels = ["sports", "finance", "medical"]

result = clf(text, candidate_labels=labels)

print(result["labels"])

# -> [’medical’]
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Zero-Shot Learning

Beyond classification: APIs also let you generate text completions.

Example (OpenAI, completion):
from openai import OpenAI

client = OpenAI(api_key="YOUR_KEY")

resp = client.completions.create(

model="gpt-4o",

prompt="The cat sat on the",

max_tokens=10

)

print(resp.choices[0].text)

# -> "mat and purred softly."

Key idea: One API, many tasks (Q&A, dialogue, code, completion).
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Beyond Zero-Shot: Supervised Fine Tuning

Setup: Map input (e.g., customer feedback) x to a label token
y ↑ {NEG, NEU, POS} (e.g., sentiment classfication).
Example:
Input "Service was quick and friendly."

Target label token POS

Loss (token-level Cross-Entropy):

LSFT(ϑ) = ↓ log pω(y | x) Use one-layer NN
= ↓ log softmax(Wh(x))y

where h(x) is the model representation used for classification (e.g.,
sentence embedding).

After training, you will have a classifier on top of the original model.
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Beyond categorical labels: Open-Ended Responses

Discussion: When multiple answers can be valid, how should we evaluate
the quality of di"erent responses?

40

1. similarity between the answers ?
"

provided answer
"

: Baltimore is in Maryland ( F )
LLM I answer: Baltimore is in MD

Elm2 answer : Baltimore is in the Northeast Canada

Different metrics : ① overlap of words / bi-grams .

② provide a score by calling another UM

C popular ! UM-as-judge)

2. what if we
don't have a

"pwided answer
"

/ ' 'ground truth "

Ask a human + Rate them ! !

If 2 answers : Rating c⇒ provide Ranking of 2



Leveraging Human Preference: RLHF

Intuition (pairwise preference):
For a prompt x, humans compare two model responses (yw, yl) and
mark the preferred one (yw).
Train a reward model rε(x, y) to predict these human preferences.
Optimize the policy ϖω to increase reward while staying close to an
SFT reference policy.

placeholder_comparison.png

Objective (schematic):

max
ω

Ey↘ϑω(·|x)[rε(x, y)] ↓ ϱDKL
(
ϖω(·|x) ⇒ϖSFT(·|x)

)

Notation: ϖω = current policy (i.e., the token probability from current
LLM); rε = reward model from human rankings; ϖSFT = supervised
reference; ϱ controls KL strength.
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RLHF: Intuition Behind the Math

Objective:

max
ω

Ey↘ϑω(·|x)[ rε(x, y) ] ↓ ϱDKL(ϖω ⇒ϖSFT)

Breakdown:
First term: maximize reward rε(x, y) (model should generate
responses humans like).
Second term: penalize KL divergence from ϖSFT → keep the
fine-tuned model close to the supervised baseline.
ϱ: tradeo" between learning new behavior and staying safe/stable.

Intuition: Think of it as: “learn from preferences, but don’t drift too far
from what we know works.”
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RLHF: Toy Example

Prompt x: "Write a polite email declining a job offer."

Candidate responses:
yw: "Thank you for the offer. After careful thought I

will not be accepting, but I truly appreciate the

opportunity." (preferred)
yl: "I don’t want this job." (less preferred)

Baseline SFT policy ϖSFT:
Trained on generic instruction data.
Knows how to decline but doesn’t reliably choose polite over blunt
style.
Might assign: ϖSFT(yw|x) = 0.45, ϖSFT(yl|x) = 0.40.

RLHF update:
Reward model gives higher score to yw.
New policy ϖω shifts probability mass:
ϖω(yw|x) = 0.70, ϖω(yl|x) = 0.15.

Takeaway: RLHF amplifies preferences while keeping ϖω close to ϖSFT.
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RLHF: Why the KL Term Matters

Example 1: Creative Writing Request Prompt: "Write a short

story about a detective solving a mystery." Without KL

penalty:
Reward model learns users rate “surprising” and “unique” content
highly.
Output: "The detective was actually the criminal’s pet

goldfish who gained consciousness through quantum

mechanics and solved the case by swimming through

interdimensional portals."

Problem: Technically “surprising,” but nonsensical → reward hacking.

With KL penalty:
Model stays anchored to coherent storytelling patterns from SFT.
Output: The muddy prints led to the garden shed, where

the detective discovered the missing antique vase.
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Limitations of RLHF: Why Look Beyond It?

RLHF has been very successful, but it comes with challenges:
Expensive and slow: Requires collecting many human preference
labels, plus training a separate reward model and doing RL (e.g.,
PPO).
Instability: Reward model can be gamed → risk of reward hacking if
KL term is not tuned carefully.
Engineering overhead: Complex pipeline (SFT → reward model →
RLHF). Harder to reproduce and scale compared to simple finetuning.
Opaque behavior: Reward models may encode hidden biases;
alignment is indirect.

Motivation: Simpler approaches like Direct Preference Optimization
(DPO) aim to keep the benefits of preference learning but avoid extra

reward models and RL machinery.
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Direct Preference Optimization (DPO): Overview

Idea: Align to human preferences without training a reward model or
running RL.

Given prompt x and two responses (yw, yl) with yw ⇑ yl (human
prefers yw).
Push policy ϖω to prefer yw over yl, relative to a reference policy ϖref
(usually SFT).

Objective:
LDPO = ↓ log ς

(
ϱ (!log ϖω ↓!log ϖref)

)

where !log ϖϖ=log ϖϖ(yw |x)↓ log ϖϖ(yl |x) and ς is logistic.

Takeaway: Increase the margin favoring yw beyond what the reference
(SFT) already does.
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DPO: Intuition Behind the Math

Pairwise margin view:

!log ϖω = log ϖω(yw|x)↓ log ϖω(yl|x) vs !log ϖref

If !log ϖω > !log ϖref, the model prefers yw more than the reference
↗ low loss.
If !log ϖω ⇓ !log ϖref, the model has not improved preference margin
↗ higher loss.
ϱ scales the strength of the margin push (temperature).

Why this works: No explicit reward model; just compare (win, lose) pairs
and teach the model to separate them more than the SFT baseline.
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DPO: Toy Example (with Reference SFT)

Prompt x: "Explain Newton’s First Law in simple terms."

Responses:
yw (preferred, plain): "Objects keep moving or stay still

unless something pushes or pulls them."

yl (less preferred, jargon): "A body maintains its velocity

vector unless acted on by an external resultant force."

Reference (SFT) policy:

ϖref(yw|x) = 0.42, ϖref(yl|x) = 0.38, !log ϖref ↔ log(0.42)↓ log(0.38) = 0.10

New policy (after DPO):

ϖω(yw|x) = 0.65, ϖω(yl|x) = 0.20, !log ϖω ↔ log(0.65)↓ log(0.20) = 1.18

Interpretation: Margin improved 0.10 → 1.18; the loss drops because ϖω
more strongly prefers the human-preferred answer than SFT did.
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Policy vs. LLM Output: What Gets Updated?

Supervised learning recap:

min
ω

1

N

N∑

i=1

ω(fω(xi), yi)

In RLHF / DPO:

ϖω(yt | x, y<t) = softmax(Whω(x, y<t))

min
ω

1

N

N∑

i=1

ωpref(ϖω(xi), y
w
i , y

l
i)

Policy ϖω = LLM token distribution.
Output text = sample from ϖω.
Updating ϑ = same as ERM, but loss ωpref comes from preferences
(e.g. reward+KL in RLHF, margin in DPO).

E!ciency: LoRA ↗ only train small low-rank adapters in attention.
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Fine-Tuning Helps... But Has Drawbacks

Problems with naive fine-tuning / RLHF:
Training instability & reward hacking: Models may game the
reward, producing strange outputs that score well but are unhelpful.
Model collapse: Training on self-generated outputs can degrade
diversity and accuracy over time.
Cost & scale: Full fine-tuning of large LLMs requires huge compute
+ data. Even partial methods (e.g., RLHF with PPO) are still
expensive.

So we ask: Can we get aligned behavior without retraining the whole
model?
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In-Context Learning (ICL): Few-Shot Prompting

What is In-Context Learning?
Model learns a task from a few examples (shots) provided directly in the
prompt. No fine-tuning or gradient updates are needed!

Prompt = [ ex1, . . . , exk︸ ︷︷ ︸
Few-shot examples

, new input︸ ︷︷ ︸
Query

] → Model Output

Examples in Action
Math: Input: 2 → Output:

4
Input: 3 → Output: 9
Input: 4 → ?

Model Output: 16

(Learns the rule x →↑ x2)

Medical: Patient: cough, fever → Flu

Patient: chest pain → Heart Issue
Patient: runny nose → ?

Model Output: Cold

(Learns symptom mapping)
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Chain-of-Thought (CoT) Prompting

Key Idea: Instead of just asking for the answer, you ask for the process.
This decomposes the problem into simpler, intermediate steps.

Zero-Shot CoT Example
Standard Prompt:
Q: A jug has 1000ml of water. I pour 250ml into a glass and then use

150ml for cooking. How much is left? A: 750ml (Incorrect)

CoT Prompt:
Q: A jug has 1000ml of water. I pour 250ml into a glass and then use

150ml for cooking. How much is left? Let’s think step by step. A:
1 Start with 1000ml.
2 Pouring 250ml into a glass leaves 1000ml - 250ml = 750ml.
3 Using 150ml for cooking leaves 750ml - 150ml = 600ml.

Final Answer: 600ml (Correct)
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Beyond CoT: Advanced Reasoning Techniques

Simple CoT can fail on harder tasks. Advanced methods structure
reasoning or connect to external tools:

Self-Consistency:
Sample multiple CoT traces with temperature > 0.
Aggregate by majority vote on the final answer.
Reduces reliance on any single flawed chain.

Tree of Thoughts (ToT):
Extends CoT into a tree of reasoning steps.
At each step, generate several “thoughts,” evaluate, and prune.
Useful for planning and search-heavy tasks (games, puzzles).

ReAct (Reasoning + Acting):
Interleaves thoughts with actions (e.g., API calls, web searches).
Grounds reasoning with external tools, overcoming knowledge cuto"s.
Example: search("current price of NVIDIA stock").

53

-
Run UM 10 times ⇒ puck the most

common
answer

-

0



Beyond CoT: Advanced Reasoning Techniques

Self-Consistency:
Task: “What is 23⇔ 47?”
Run the same CoT multiple times with randomness.
Outputs: [1081, 1081, 981, 1081, 1081].
Majority vote → 1081 (correct).

Tree of Thoughts (ToT):
Task: “Can the 8-puzzle be solved from this start state?”
Model explores moves as a tree: Step 1: try sliding left / up / right.
Step 2: evaluate partial board states.
Prune bad branches → find a valid solution path.

ReAct (Reasoning + Acting):
Task: “Who won the 2024 NBA finals?”
Thought: “Need current info.”
Action: search("2024 NBA finals winner")
Observation: “Boston Celtics defeated Dallas Mavericks.”
Final Answer: “The Celtics won in 2024.”
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Automating Prompt Engineering

Manual prompt design is brittle, time-consuming, and often fails to
generalize — this is prompt fragility. New methods treat prompt design
as an optimization problem rather than manual trial-and-error.

Automatic Prompt Engineer (APE): LLM generates and scores
candidate instructions.
DSPy: Prompt-as-programming with modules (ChainOfThought,
ReAct); compiler optimizes prompts and examples.
TextGrad: Views prompts as di"erentiable “parameters,” enabling
gradient-style search.
Microsoft APO: Iterative RL-style framework to refine prompts for
robust performance.

Key idea: Moving from manual prompt engineering to automated
prompt programming.

55

C another LB company ! )



Comparison: Fine-Tuning vs. In-Context Learning

Fine-Tuning (SFT / RLHF / DPO)
Core Idea Update parameters ω: minω

1
N

∑
ϱ(fω(xi), yi)

Infrastructure Heavy: GPUs/TPUs, training pipelines, monitoring
Performance Specialized: SOTA in domain tasks; embeds deep knowledge
Challenges Expensive; catastrophic forgetting; alignment tax; collapse risk
Use When... Need domain expertise, safety, and long-term consistency

In-Context Learning (ICL)
Core Idea Keep ω fixed; condition on demos: ϑ(y|x, demo)
Infrastructure Light: API or local inference; no retraining
Performance Flexible: e!ective few/zero-shot; adapts quickly across tasks
Challenges Prompt fragility; context window limits; inference cost/latency
Use When... Need rapid prototyping, ad-hoc reasoning, or lack labeled data

Takeaway: Fine-tuning ≃ update ω. ICL ≃ reuse ω via conditioning.
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