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Instructions

To successfully complete the theory track, attempt as many questions as you can and sub-
mit good-faith solutions to your strongest five. You only need to turn in five solved
questions (good-faith attempts) out of the ten to pass. Show your reasoning clearly;
partial progress earns partial credit. Unless otherwise stated, you may assume all random
variables are well-behaved so that expectations and variances exist.

1. ℓ2 distance and cosine similarity. Let x,y ∈ Rd with ∥x∥2 = ∥y∥2 = 1. Prove that
minimizing the squared Euclidean distance ∥x−y∥22 is equivalent to maximizing the cosine
similarity x⊤y. (Hint: expand the squared norm and use the unit-norm assumption.)

2. Optimal regression function. Let X ∈ Rd and Y ∈ R. Show that the function f
which minimizes the expected squared loss E

[
(Y −f(X))2

]
is the conditional expectation

f ∗(x) = E[Y | X = x]. (Hint: condition on X, expand the square, and use the tower
property to compare any f to f ∗.)

3. Convexity and global minima. Recall that a function g : R → R is convex if g(λx +
(1− λ)y) ≤ λg(x) + (1− λ)g(y) for all x, y and λ ∈ [0, 1]. Prove that any local minimum
of a differentiable convex function (you may treat the one-dimensional case for simplicity)
is also a global minimum. Explain where you use first-order optimality conditions (i.e.,
∇g(xloc) = 0) in your argument.

4. Bias–variance decomposition. Let f̂(X) be an estimator for the target Y and suppose
Y = f(X) + ε with E[ε | X] = 0 and Var(ε | X) = σ2. Show that

E
[
(Y − f̂(X))2

]
= Bias[f̂(X)]2 +Var[f̂(X)] + σ2,

where the bias and variance are taken with respect to the randomness in the training data
used to fit f̂ . Clearly label each conditioning step and define the bias term you use.

5. InfoNCE as cross-entropy. Recall the InfoNCE objective for contrastive learning with
one positive pair (v,v+) and K negative examples {v−

k }Kk=1:

LInfoNCE = − log
exp(s(v,v+)/τ)

exp(s(v,v+)/τ) +
∑K

k=1 exp(s(v,v
−
k )/τ)

,
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where s(·, ·) is a similarity score and τ is a temperature parameter. Show that optimizing
this loss is equivalent to minimizing the cross-entropy loss of a (K + 1)-class classifier
that predicts which candidate is the true positive (one class per candidate). Explicitly
construct the classifier viewpoint by (i) defining the logits for each class and (ii) mapping
InfoNCE terms to the softmax probabilities and label indicator.

6. TF–IDF attenuates stopwords. Suppose documents x and y are represented with
TF–IDF weights xw = tfx(w) · idf(w) and yw = tfy(w) · idf(w). Here tfx(w) is the
term frequency of word w in document x, df(w) is the document frequency, N is the
number of documents, and idf(w) = log N

df(w)
. Show that the dot product x⊤y =∑

w tfx(w) tfy(w) idf(w)
2 weights each word by idf(w)2. Use this algebra to interpret

why high document-frequency words (stopwords) contribute little to similarity.

7. Gradient descent on a 1D quadratic. Recall that gradient descent updates parame-
ters by wt+1 = wt − η∇f(wt). Consider f(w) =

1
2
a(w − w∗)2 with a > 0.

(a) Derive the gradient descent update wt+1 = wt − η∇f(wt) and express the error
et = wt − w∗ as a linear recurrence.

(b) Show that |et| converges to zero if and only if 0 < η < 2/a. (Hint: analyze the
magnitude of the recurrence ratio.)

8. KL divergence between Gaussians. Recall that the Kullback–Leibler divergence from
N (µ0, σ

2
0) to N (µ1, σ

2
1) is defined as

DKL

(
N (µ0, σ

2
0) ∥ N (µ1, σ

2
1)
)
=

∫
log

p0(x)

p1(x)
p0(x) dx.

Derive the standard closed-form expression for this divergence in one dimension and
explain why it is always non-negative. (Optional: note which metric properties DKL

fails.)

9. Softmax temperature intuition. Let z ∈ Rm be logits for a categorical distribution

and define the tempered softmax pi(τ) =
exp(zi/τ)∑m
j=1 exp(zj/τ)

.

(a) Evaluate the limits of pi(τ) as τ → 0+ and as τ → ∞ for fixed logits.

(b) Illustrate the effect of temperature by analyzing a three-class example with logits
(2, 1, 0) and plotting or tabulating pi(τ) for τ ∈ {0.1, 0.5, 1, 2, 5}. Explain how
decreasing versus increasing τ sharpens or flattens the distribution.

10. Choose-your-own fact. Identify one mathematical or statistical result related to the
course material that you find interesting (e.g., a theorem, lemma, or algorithmic guaran-
tee). (a) State the result precisely. (b) Explain why it matters for machine learning. (c)
Outline a proof sketch or intuitive justification that would convince a peer.
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