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What Makes Data Multimodal?

Definition:
@ Information from multiple modalities (text, images, audio, etc.)
@ Each modality provides different types of information

@ Combined analysis often more powerful than single modality

Think About How You Process Information:
e Reading a paper: You see text and interpret figures
@ Doctor's diagnosis: Patient symptoms (text) and X-ray images

@ Drug discovery: Molecular structure (graph) and effect descriptions

The Key Insight:
Each modality tells part of the story. Together, they tell the complete story.



Biomedical Multimodal Examples

Rich Multimodal Landscape:
@ Text + Images: Research papers with figures and charts
@ Molecular 4+ Text: Chemical structures with property descriptions
@ Genomics + Phenotype: DNA sequences with trait descriptions
@ Medical Images + Reports: Scans with radiological findings
o

Audio + Text: Voice biomarkers with clinical notes

Why Multimodal Matters in Health:

e Redundancy: Cross-validate findings across modalities

@ Completeness: Capture phenomena invisible to single modality
@ Robustness: Handle missing or corrupted data
°

Human-like: Matches how clinicians make decisions



The Multimodal Challenge: Why It's Hard

The Representation Gap:
@ Images: High-dimensional pixel arrays, spatial patterns
@ Text: Sequential tokens, semantic relationships
@ Molecules: Graph structures, chemical bonds

e Audio: Time-frequency representations, temporal patterns

Fundamental Questions:
@ How do we represent such different data types?
@ How do we find connections between modalities?
@ When should we combine vs. analyze separately?

@ How do we handle missing modalities?



How Do We Represent Images? From Pixels to CNNs

Start simple, then add structure:
@ Raw pixels (vectorized): flatten an H x W x C image into REWC,

e Pros: simplest numeric representation.
e Cons: destroys spatial locality; no translation/scale invariance.

@ Patches / local descriptors: split into fixed-size patches (e.g., 16x16),
summarize each patch.

o Keeps some locality; can pool/aggregate over patches.

e Convolutions (CNNs): learn local filters with weight sharing to
produce feature maps.

e Hierarchy: edges — textures — parts — objects
e Pooling provides translation tolerance; preserves spatial structure.

Key idea: respect image geometry (locality, stationarity) instead of
treating pixels as an unordered vector.



Convolutional Neural Networks (CNNs)

Key idea: learn spatially-local filters shared across the image.

@ A convolution applies a kernel K € R¥** across the input:

kK k

(F+K)(i,j) =>_ Y K(u,v)F(i+u,j+v)

u=1v=1

@ Weight sharing: the same K is used everywhere — translation
equivariance.
e Stacking layers builds a hierarchy of features:
e Shallow: edges, corners, textures
o Deeper: object parts, semantics

@ Pooling layers reduce resolution, increase invariance.

Popular CNN backbones: AlexNet, VGG, ResNet (skip connections),
EfficientNet (scaling).



CNN Visualization




Vision Transformers (ViT)

Key idea: treat an image as a sequence of patches — use a Transformer
encoder.

e Split image into N patches {z1,...,zn}, flatten each to a vector.
@ Project each patch with a linear map E:

zi=FE-z;4+p;,, t1=1,...,N

where p; is a positional embedding.

@ Add a special [CLS] token zp; the Transformer encoder produces
contextualized representations:

7' = TransformerEncoder([29, 21, - - - , 2n])

@ Use the output of zy as a global image embedding.

Properties: scales well with data, captures long-range dependencies, now
competitive or better than CNNs on many tasks.



ViT Visualization

Vision Transformer (ViT) Transformer Encoder

Class

Bird
! < MLP
2L Head

Transformer Encoder
Patch + Position

s o)) o)) e @)a)e]

Linear projection of Flattened Patches

Multi-Head
Attention

Embedded Patches




From Representation to Alignment

So far:
@ We learned how to build strong image embeddings (CNNs, ViTs).

e We also know how to build text embeddings (LLMs, word
embeddings).

Next question: How do we bring two modalities into the same space?
@ Need a way to compare image and text representations.

@ Requires a shared latent space for cross-modal understanding.

This motivates contrastive learning for multimodal alignment.
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Mathematical Foundation: Similarity Metrics

Core Question: How do we measure similarity between different
modalities?

Cosine Similarity (Most Common):

sim(u,v) = vy Dz Uil

[ullv] \/Z?:l “12\/2?:1 v;

Toy Example:
@ Image embedding: u = [0.8,0.6,0.0]
e Text embedding: v = [0.6,0.8,0.0]

e cimilarity- 0.8x0.640.6x0.840.0x0.0 _ 096 _
@ Cosine similarity: 087 10.673:0.07 /0 6710 874007 — TOx10 — 0.96

Why Cosine?
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Learning from Paired Data

Key intuition: If you show a model images and their captions together, it
can learn to connect visual and textual concepts.

i

w2 @ Positive pair: (dog image, matching
] ] o] - o caption) should be close in
IR embedding space.

Image
> I LTy | 13T, | IyT; I3 T,
R || BT BT | BTy Ty

; : o Negative pairs: (dog image, caption
about a car) should be far apart.

“A brown dog running in the grass”

Big picture: The model aligns images and text into a shared semantic
space by performing “classification”.
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Contrastive Learning: The Core Idea

Goal: Bring matched pairs close, push mismatched pairs apart.

e Given a batch of image—text pairs {(I;, T;)}¥,

['contrastive =

1 exp f1:),9(T3))/7)
Z 5 exp((F (L), o(T;))/7)

@ Where:
o f(I) = image encoder (CNN/ViT)
o g(T) = text encoder (Transformer/LLM)
e T = temperature parameter controlling sharpness of similarity: lower 7
= more peaky distributions (hard negatives matter more).

@ Encourages alignment between true pairs and separation otherwise.
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From Alignment to Fusion: General Recipe

Alignment works whenever we have encoders f and g:
f:X>RY g YRY

_ (f(=),9())
9 = T Me@)

Examples:
@ Image <> Text (CLIP)
@ Audio +» Text (speech + transcripts)
e Molecule <+ Text (chemistry + descriptions)

Use cases: zero-shot classification, retrieval, embedding search.

When alignment isn’t enough: We need fusion (cross-attention, hybrid
models) for fine-grained grounding and reasoning — more coming.
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Using CLIP: Zero-Shot with Prompts

Zero-shot via prompt templates:

@ Build text prompts like: "a photo of a {label}", "an X-ray showing
{condition}", "a histology slide of {tissue}."

@ Prompt ensembling: average embeddings over multiple templates;
improves stability.
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Using CLIP: Linear Probe (Few-Shot)

Linear probe:
@ Freeze image encoder; extract embeddings

e Fit a light classifier (logistic regression, tree models) on a small
labeled set

@ Strong baseline, avoids full fine-tuning cost

16



Domain Adaptation: From CLIP to BiomedCLIP

Challenge: Web captions # biomedical language/images.
@ BiomedCLIP: pretrain on biomedical image—text pairs (PMC, etc.).

e Adapters/LoRA: parameter-efficient fine-tuning on limited domain
data.

Practical knobs:

@ Freeze vision encoder; fine-tune text prompts (prompt tuning) or small
adapters.

e Curriculum prompts: generic — domain-specific (radiology —
finding-level).

e Regularize: weight decay, mixup on embeddings, moderate 7.
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Beyond Alignment: Cross-Attention Fusion

Why fuse? Some tasks need fine-grained grounding (token <> patch).

e Cross-attention lets text tokens query image patches (and/or vice
versa).

e Used in BLIP-2/LLaVA/Flamingo-style models for VQA, captioning,
grounding.

Minimal math:

QK]
Attn(Qtexta Kimagea Vimage) = softmax \/g V.,

Text asks; image answers. Great for localization, step-by-step reasoning.
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Cross-Modal Attention: The Bridge Between Modalities

Standard Self-Attention: @, K, V all from same modality
Cross-Modal Attention: Mix queries and keys from different modalities

Example Configurations:

© Image — Text: @ from text, K,V from image

Attention(Qtexta Kimagea Vimage) (1)

@ Text — Image: @ from image, K,V from text

Attention(Qimage; Ktext, Viext) (2)

Intuition:

@ Text asks questions (@), image provides answers (K, V')
@ "What does this medical image show?" — Relevant image patches
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Vision—Language Models (VLMs)

Definition: Models that jointly process images and text to produce
shared understanding.
@ Inputs: multimodal pairs (image + caption, scan + report, diagram
+ text)

@ Architecture: often two encoders (vision, text) with fusion layers
(cross-attention)

e Outputs: can be text (caption, answer), labels (classification), or
embeddings (retrieval)
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Visual Question Answering (VQA)

Task: Answer a natural language question about an image.
e Input: (Image, Question) e.g., Chest X-ray + "What abnormality is
visible?"
@ Model: process image patches + text tokens; combine with
cross-attention

e Output: Answer text or categorical label

Why it matters:
@ Brings interaction: models respond to specific queries

o Biomedical use: "Where is the tumor?”, “What stage is this?", “Has
pneumonia improved?”

@ VQA = the canonical benchmark for multimodal reasoning
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Representative VLMs

General-domain:
e BLIP / BLIP-2: pretrain on image—text pairs, instruction-tune for
captioning & QA
e Flamingo: frozen LLM + cross-attention adapters

e LLaVA: connect CLIP vision encoder to LLaMA (open-weight LLM
from meta) for multimodal dialogue

Biomedical adaptations:
e MedVQA: chest X-ray VQA datasets (e.g., VQA-RAD)
e PMC-VQA: millions of figure—caption QA pairs from PubMed Central
@ BiolLLaVA: LLaVA variants tuned on biomedical images + text
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Three Key Fusion Strategies

Early Fusion (Feature Level; what we just covered):
@ Combine raw features from different modalities
@ Pro: Rich interaction between modalities
e Con: High dimensionality, potential for overfitting

Late Fusion (Decision Level):
@ Process each modality separately, combine final outputs
@ Pro: Modular, interpretable, handles missing data

@ Con: Limited cross-modal interaction

Hybrid Fusion (Intermediate):
e Combine at multiple stages of processing
@ Pro: Balance between interaction and modularity
@ Con: More complex architecture and training
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VLM Tasks: Retrieval

Retrieval (Image < Text)
e Task: Given a query (e.g., “Which image shows a doctor examining an
X-ray?"), retrieve the correct image or caption.

@ Key Metrics:
o Recall@K: Fraction of queries where the correct match appears in the
top-K results.

#{queries with correct in top-K}
#{queries}

Example: Recall@10 = 0.85 means 85% of queries had the correct
answer within the first 10 retrieved results.

RecallOK =

e Mean Reciprocal Rank (MRRY): Average of reciprocal ranks of the
first relevant item. Rewards higher ranking of the correct match.

1 X 1
MRR = —
N;ranki

o Other: Precision@K, nDCG (normalized discounted cumulative gain)
for graded relevance. 24




VLM Tasks: Captioning

Captioning
e Task: Given an image, generate a natural language description (e.g.,
“A nurse holding a newborn baby in the delivery room.”)
@ Most Common Metric: BLEU
o Measures n-gram precision between generated caption and references.
e Formula (BLEU-N):

N
BLEU = BP - exp (Z wh, logpn>

n=1
where:
@ p, = modified n-gram precision
e w, = weight (often uniform, 1/N)
1 ife>r
BP = is the brevit Ity, with ¢ = candidat
° Q0=r/0) o< is the brevity penalty, with ¢ = candidate
length, r = reference length
o Other metrics: CIDEr (consensus-based), SPICE (semantic graph).
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VLM Tasks: Visual Question Answering (VQA)

Visual Question Answering
@ Task: Answer natural language questions about an image. Example:
Q: “What color is the traffic light?” — A: "Green”
o Key Metrics:
e Accuracy: Proportion of questions answered correctly.

#{correct answers}
#{total questions}

Accuracy =

o Exact Match (EM): 1 if predicted string exactly matches reference, 0
otherwise.

e F1 score: Harmonic mean of precision and recall at the token level.

F1_9 Precision - Recall

Precision + Recall

26



VLM Tasks: Reasoning Benchmarks

Multimodal Reasoning

@ Task: Answer complex questions requiring reasoning or external
knowledge. Examples:

o OK-VQA: "Which company manufactures the phone in the image?”
o ScienceQA: “Which planet is shown in the diagram?”
o MathVista: “What is the angle at point A in the figure?”
@ Metrics:
o Exact Match / F1 (string-level correctness).
o Chain-of-thought consistency: fraction of steps logically valid.
e Human evaluation: correctness and faithfulness of reasoning traces.
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VLM Tasks: Multimodal Classification

Classification
@ Task: Predict categorical label from fused modalities. Example: Input
= meme image + caption. Output = “Hateful” or “Not hateful.”
o Key Metrics:
e Accuracy: fraction of correct predictions.
e Macro-F1: average F1 across all classes, treating them equally.

1 &
Macro-F1 = ° ; F1.

e AUROC: area under ROC curve; probability that positive is ranked
above negative.
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VLM Tasks: Structured Perception

Structured Perception (Detection & Segmentation)
@ Task: Parse structured elements from multimodal inputs. Example:
Given a scanned document, identify table regions and read cell values.
o Key Metrics:
e Mean Average Precision (mAP) for detection:

C

1
1
/0 p(r)dr and m c E A

where p(r) = precision as a function of recall.
e Mean Intersection over Union (mloU) for segmentation:

N
_|PNG]| 1 _
loU = PUG mloU = N ;:1 loU;

where P = predicted region, G = ground truth.
29



Popular Pretrained Multimodal Models

@ CLIP / Open-CLIP: Contrastive alignment of image/text embeddings —
strong retrieval and zero-shot classification.

@ BLIP / BLIP-2: Generative pretraining (captioning) + adaptation to VQA
and reasoning tasks.

@ Flamingo (DeepMind): Few-shot multimodal QA by adding
cross-attention layers to frozen LLMs.

@ LLaVA, GPT-4V: Visual encoder + LLM backbone; strong reasoning and
general-purpose QA.
Key multimodal pretraining strategies:
@ Contrastive (aligning vision/text in shared space)
@ Generative (predicting captions or answers)

@ Instruction tuning (aligning multimodal input with human queries)
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Adapting Pretrained Models to Tasks

Zero-Shot / Prompting
@ CLIP: zero-shot classification with natural prompts

@ GPT-4V: direct domain-specific reasoning (e.g., chart analysis)

Lightweight Finetuning
@ LoRA / Adapters: update small parameter subsets (W ~ W, + AB")

@ Instruction-tuning with limited task-specific data

Task-Specific Heads
@ Detection: bounding box regression head

@ VQA: cross-attention head into LLM decoder

LLM vs VLM Finetuning
@ LLM finetuning: focuses on text-only alignment (e.g., domain language
adaptation).
@ VLM finetuning: requires jointly adapting vision + language modules (e.g.,
aligning image features to textual concepts). 31



Applications of VLMs

@ Healthcare: Radiology reports, pathology slides, multimodal risk prediction
(Metrics: AUROC, sensitivity/specificity)

@ Science & Education: Diagram QA, chart interpretation, multimodal
tutoring (Metrics: Exact Match, F1, reasoning consistency)

@ Web & Industry: Content moderation, e-commerce retrieval, multimodal
search (Metrics: F1, Recall@K, CTR = clicks / impressions)
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What is a potential application in your research area?

33
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