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What Makes Data Multimodal?

Definition:
Information from multiple modalities (text, images, audio, etc.)
Each modality provides different types of information
Combined analysis often more powerful than single modality

Think About How You Process Information:
Reading a paper: You see text and interpret figures
Doctor’s diagnosis: Patient symptoms (text) and X-ray images
Drug discovery: Molecular structure (graph) and effect descriptions

The Key Insight:
Each modality tells part of the story. Together, they tell the complete story.
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Biomedical Multimodal Examples

Rich Multimodal Landscape:
Text + Images: Research papers with figures and charts
Molecular + Text: Chemical structures with property descriptions
Genomics + Phenotype: DNA sequences with trait descriptions
Medical Images + Reports: Scans with radiological findings
Audio + Text: Voice biomarkers with clinical notes

Why Multimodal Matters in Health:
Redundancy: Cross-validate findings across modalities
Completeness: Capture phenomena invisible to single modality
Robustness: Handle missing or corrupted data
Human-like: Matches how clinicians make decisions
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The Multimodal Challenge: Why It’s Hard

The Representation Gap:
Images: High-dimensional pixel arrays, spatial patterns
Text: Sequential tokens, semantic relationships
Molecules: Graph structures, chemical bonds
Audio: Time-frequency representations, temporal patterns

Fundamental Questions:
How do we represent such different data types?
How do we find connections between modalities?
When should we combine vs. analyze separately?
How do we handle missing modalities?
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How Do We Represent Images? From Pixels to CNNs

Start simple, then add structure:
Raw pixels (vectorized): flatten an H ×W × C image into RHWC .

Pros: simplest numeric representation.
Cons: destroys spatial locality; no translation/scale invariance.

Patches / local descriptors: split into fixed-size patches (e.g., 16×16),
summarize each patch.

Keeps some locality; can pool/aggregate over patches.
Convolutions (CNNs): learn local filters with weight sharing to
produce feature maps.

Hierarchy: edges → textures → parts → objects
Pooling provides translation tolerance; preserves spatial structure.

Key idea: respect image geometry (locality, stationarity) instead of
treating pixels as an unordered vector.
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Convolutional Neural Networks (CNNs)

Key idea: learn spatially-local filters shared across the image.
A convolution applies a kernel K ∈ Rk×k across the input:

(F ∗K)(i, j) =

k∑
u=1

k∑
v=1

K(u, v)F (i+ u, j + v)

Weight sharing: the same K is used everywhere → translation
equivariance.
Stacking layers builds a hierarchy of features:

Shallow: edges, corners, textures
Deeper: object parts, semantics

Pooling layers reduce resolution, increase invariance.

Popular CNN backbones: AlexNet, VGG, ResNet (skip connections),
EfficientNet (scaling).
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CNN Visualization
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Vision Transformers (ViT)

Key idea: treat an image as a sequence of patches → use a Transformer
encoder.

Split image into N patches {x1, . . . , xN}, flatten each to a vector.
Project each patch with a linear map E:

zi = E · xi + pi, i = 1, . . . , N

where pi is a positional embedding.
Add a special [CLS] token z0; the Transformer encoder produces
contextualized representations:

Z ′ = TransformerEncoder([z0, z1, . . . , zN ])

Use the output of z0 as a global image embedding.

Properties: scales well with data, captures long-range dependencies, now
competitive or better than CNNs on many tasks.
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ViT Visualization
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From Representation to Alignment

So far:
We learned how to build strong image embeddings (CNNs, ViTs).
We also know how to build text embeddings (LLMs, word
embeddings).

Next question: How do we bring two modalities into the same space?
Need a way to compare image and text representations.
Requires a shared latent space for cross-modal understanding.

This motivates contrastive learning for multimodal alignment.
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Mathematical Foundation: Similarity Metrics

Core Question: How do we measure similarity between different
modalities?

Cosine Similarity (Most Common):

sim(u,v) =
u · v
|u||v|

=

∑n
i=1 uivi√∑n

i=1 u
2
i

√∑n
i=1 v

2
i

Toy Example:
Image embedding: u = [0.8, 0.6, 0.0]

Text embedding: v = [0.6, 0.8, 0.0]

Cosine similarity: 0.8×0.6+0.6×0.8+0.0×0.0√
0.82+0.62+0.02

√
0.62+0.82+0.02

= 0.96
1.0×1.0 = 0.96

Why Cosine?
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Learning from Paired Data

Key intuition: If you show a model images and their captions together, it
can learn to connect visual and textual concepts.

“A brown dog running in the grass”

Positive pair: (dog image, matching
caption) should be close in
embedding space.
Negative pairs: (dog image, caption
about a car) should be far apart.

Big picture: The model aligns images and text into a shared semantic
space by performing “classification”.
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Contrastive Learning: The Core Idea

Goal: Bring matched pairs close, push mismatched pairs apart.
Given a batch of image–text pairs {(Ii, Ti)}Ni=1:

Lcontrastive = − 1

N

N∑
i=1

[
log

exp(⟨f(Ii), g(Ti)⟩/τ)∑
j exp(⟨f(Ii), g(Tj)⟩/τ)

]

Where:
f(I) = image encoder (CNN/ViT)
g(T ) = text encoder (Transformer/LLM)
τ = temperature parameter controlling sharpness of similarity: lower τ
⇒ more peaky distributions (hard negatives matter more).

Encourages alignment between true pairs and separation otherwise.
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From Alignment to Fusion: General Recipe

Alignment works whenever we have encoders f and g:

f : X →Rd, g : Y→Rd

s(x, y) =
⟨f(x), g(y)⟩
∥f(x)∥∥g(y)∥

Examples:
Image ↔ Text (CLIP)
Audio ↔ Text (speech + transcripts)
Molecule ↔ Text (chemistry + descriptions)

Use cases: zero-shot classification, retrieval, embedding search.

When alignment isn’t enough: We need fusion (cross-attention, hybrid
models) for fine-grained grounding and reasoning – more coming.
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Using CLIP: Zero-Shot with Prompts

Zero-shot via prompt templates:
Build text prompts like: "a photo of a {label}" , "an X-ray showing
{condition}" , "a histology slide of {tissue}."
Prompt ensembling: average embeddings over multiple templates;
improves stability.
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Using CLIP: Linear Probe (Few-Shot)

Linear probe:
Freeze image encoder; extract embeddings
Fit a light classifier (logistic regression, tree models) on a small
labeled set
Strong baseline, avoids full fine-tuning cost
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Domain Adaptation: From CLIP to BiomedCLIP

Challenge: Web captions ̸= biomedical language/images.
BiomedCLIP: pretrain on biomedical image–text pairs (PMC, etc.).
Adapters/LoRA: parameter-efficient fine-tuning on limited domain
data.

Practical knobs:
Freeze vision encoder; fine-tune text prompts (prompt tuning) or small
adapters.
Curriculum prompts: generic → domain-specific (radiology →
finding-level).
Regularize: weight decay, mixup on embeddings, moderate τ .
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Beyond Alignment: Cross-Attention Fusion

Why fuse? Some tasks need fine-grained grounding (token ↔ patch).
Cross-attention lets text tokens query image patches (and/or vice
versa).
Used in BLIP-2/LLaVA/Flamingo-style models for VQA, captioning,
grounding.

Minimal math:

Attn(Qtext,Kimage,Vimage) = softmax

(
QtK

⊤
i√

d

)
Vi

Text asks; image answers. Great for localization, step-by-step reasoning.
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Cross-Modal Attention: The Bridge Between Modalities

Standard Self-Attention: Q, K, V all from same modality
Cross-Modal Attention: Mix queries and keys from different modalities

Example Configurations:
1 Image → Text: Q from text, K,V from image

Attention(Qtext,Kimage,Vimage) (1)

2 Text → Image: Q from image, K,V from text

Attention(Qimage,Ktext,Vtext) (2)

Intuition:
Text asks questions (Q), image provides answers (K,V )
"What does this medical image show?" → Relevant image patches
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Vision–Language Models (VLMs)

Definition: Models that jointly process images and text to produce
shared understanding.

Inputs: multimodal pairs (image + caption, scan + report, diagram
+ text)
Architecture: often two encoders (vision, text) with fusion layers
(cross-attention)
Outputs: can be text (caption, answer), labels (classification), or
embeddings (retrieval)
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Visual Question Answering (VQA)

Task: Answer a natural language question about an image.
Input: (Image, Question) e.g., Chest X-ray + "What abnormality is
visible?"
Model: process image patches + text tokens; combine with
cross-attention
Output: Answer text or categorical label

Why it matters:
Brings interaction: models respond to specific queries
Biomedical use: “Where is the tumor?”, “What stage is this?”, “Has
pneumonia improved?”
VQA = the canonical benchmark for multimodal reasoning
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Representative VLMs

General-domain:
BLIP / BLIP-2: pretrain on image–text pairs, instruction-tune for
captioning & QA
Flamingo: frozen LLM + cross-attention adapters
LLaVA: connect CLIP vision encoder to LLaMA (open-weight LLM
from meta) for multimodal dialogue

Biomedical adaptations:
MedVQA: chest X-ray VQA datasets (e.g., VQA-RAD)
PMC-VQA: millions of figure–caption QA pairs from PubMed Central
BioLLaVA: LLaVA variants tuned on biomedical images + text
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Three Key Fusion Strategies

Early Fusion (Feature Level; what we just covered):
Combine raw features from different modalities
Pro: Rich interaction between modalities
Con: High dimensionality, potential for overfitting

Late Fusion (Decision Level):
Process each modality separately, combine final outputs
Pro: Modular, interpretable, handles missing data
Con: Limited cross-modal interaction

Hybrid Fusion (Intermediate):
Combine at multiple stages of processing
Pro: Balance between interaction and modularity
Con: More complex architecture and training
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VLM Tasks: Retrieval

Retrieval (Image ↔ Text)
Task: Given a query (e.g., “Which image shows a doctor examining an
X-ray?”), retrieve the correct image or caption.
Key Metrics:

Recall@K: Fraction of queries where the correct match appears in the
top-K results.

Recall@K =
#{queries with correct in top-K}

#{queries}
Example: Recall@10 = 0.85 means 85% of queries had the correct
answer within the first 10 retrieved results.
Mean Reciprocal Rank (MRR): Average of reciprocal ranks of the
first relevant item. Rewards higher ranking of the correct match.

MRR =
1

N

N∑
i=1

1

ranki

Other: Precision@K, nDCG (normalized discounted cumulative gain)
for graded relevance. 24



VLM Tasks: Captioning

Captioning
Task: Given an image, generate a natural language description (e.g.,
“A nurse holding a newborn baby in the delivery room.”)
Most Common Metric: BLEU

Measures n-gram precision between generated caption and references.
Formula (BLEU-N):

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
where:

pn = modified n-gram precision
wn = weight (often uniform, 1/N)

BP =

{
1 if c > r

e(1−r/c) if c ≤ r
is the brevity penalty, with c = candidate

length, r = reference length
Other metrics: CIDEr (consensus-based), SPICE (semantic graph).
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VLM Tasks: Visual Question Answering (VQA)

Visual Question Answering
Task: Answer natural language questions about an image. Example:
Q: “What color is the traffic light?” → A: “Green”
Key Metrics:

Accuracy: Proportion of questions answered correctly.

Accuracy =
#{correct answers}
#{total questions}

Exact Match (EM): 1 if predicted string exactly matches reference, 0
otherwise.
F1 score: Harmonic mean of precision and recall at the token level.

F1 = 2 · Precision · Recall
Precision + Recall
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VLM Tasks: Reasoning Benchmarks

Multimodal Reasoning
Task: Answer complex questions requiring reasoning or external
knowledge. Examples:

OK-VQA: “Which company manufactures the phone in the image?”
ScienceQA: “Which planet is shown in the diagram?”
MathVista: “What is the angle at point A in the figure?”

Metrics:
Exact Match / F1 (string-level correctness).
Chain-of-thought consistency: fraction of steps logically valid.
Human evaluation: correctness and faithfulness of reasoning traces.
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VLM Tasks: Multimodal Classification

Classification
Task: Predict categorical label from fused modalities. Example: Input
= meme image + caption. Output = “Hateful” or “Not hateful.”
Key Metrics:

Accuracy: fraction of correct predictions.
Macro-F1: average F1 across all classes, treating them equally.

Macro-F1 =
1

C

C∑
c=1

F1c

AUROC: area under ROC curve; probability that positive is ranked
above negative.
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VLM Tasks: Structured Perception

Structured Perception (Detection & Segmentation)
Task: Parse structured elements from multimodal inputs. Example:
Given a scanned document, identify table regions and read cell values.
Key Metrics:

Mean Average Precision (mAP) for detection:

AP =

∫ 1

0

p(r) dr and mAP =
1

C

C∑
c=1

APc

where p(r) = precision as a function of recall.
Mean Intersection over Union (mIoU) for segmentation:

IoU =
|P ∩G|
|P ∪G|

, mIoU =
1

N

N∑
i=1

IoUi

where P = predicted region, G = ground truth.
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Popular Pretrained Multimodal Models

CLIP / Open-CLIP: Contrastive alignment of image/text embeddings →
strong retrieval and zero-shot classification.

BLIP / BLIP-2: Generative pretraining (captioning) + adaptation to VQA
and reasoning tasks.

Flamingo (DeepMind): Few-shot multimodal QA by adding
cross-attention layers to frozen LLMs.

LLaVA, GPT-4V: Visual encoder + LLM backbone; strong reasoning and
general-purpose QA.

Key multimodal pretraining strategies:

Contrastive (aligning vision/text in shared space)

Generative (predicting captions or answers)

Instruction tuning (aligning multimodal input with human queries)
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Adapting Pretrained Models to Tasks

Zero-Shot / Prompting

CLIP: zero-shot classification with natural prompts

GPT-4V: direct domain-specific reasoning (e.g., chart analysis)

Lightweight Finetuning

LoRA / Adapters: update small parameter subsets (W ≈ W0 +AB⊤)

Instruction-tuning with limited task-specific data

Task-Specific Heads

Detection: bounding box regression head

VQA: cross-attention head into LLM decoder

LLM vs VLM Finetuning

LLM finetuning: focuses on text-only alignment (e.g., domain language
adaptation).

VLM finetuning: requires jointly adapting vision + language modules (e.g.,
aligning image features to textual concepts). 31



Applications of VLMs

Healthcare: Radiology reports, pathology slides, multimodal risk prediction
(Metrics: AUROC, sensitivity/specificity)

Science & Education: Diagram QA, chart interpretation, multimodal
tutoring (Metrics: Exact Match, F1, reasoning consistency)

Web & Industry: Content moderation, e-commerce retrieval, multimodal
search (Metrics: F1, Recall@K, CTR = clicks / impressions)
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What is a potential application in your research area?
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